

ISSN (Print): 2278-5140, Volume-1, Issue – 2, 2012

37

An Efficient Algorithm for the Discovery of

Multiple Longest Common Subsequence

Anusha Koneru, Gowtham D, Navya Sree Y & Venkata Rao J

Department of CSE, K L University

E-mail: anusha.koneru13@gmail.com,

gowtham.deva1283@gmail.com,

navya.yarramsetti@gmail.com,

venkat2all@gmail.com

Abstract – In many applications of bioinformatics and

computational genomics, the discovery of the longest

common subsequence (LCS) of multiple strings is an NP-

hard problem which cannot be solved in polynomial time.

As the rapid growth of size and complexity of biological

data increasing, significant efforts have been made and

enhancements are made for the efficiency to an arbitrary

number of strings. In order to address these issues, we

present an algorithm for the multiple LCS (or MLCS)

problem, on discovering an LCS of any number of strings,

and its parallel realization. This is based on the dominant

point approach and employs a fast divide-and conquer

technique to compute the dominant points. Our algorithm

demonstrates the same performance as the fastest existing

MLCS algorithm designed for a case of three strings. On

the other hand for more than three strings, our algorithm

is significantly faster than the best existing sequential

methods, reaching up to 2-3 orders of magnitude faster

speed on large-size problems. Also it reveals that a near-

linear speedup has occurring with respect to the sequential

algorithm on applying to random and biological sequences.

Keywords – longest common subsequence (LCS), multiple

longest common subsequence (MLCS), dynamic

programming, dominant point method, divide and conquer,

multithreading.

I. INTRODUCTION

The multiple longest common subsequence problem

(MLCS) is to find the longest subsequence shared

between two or more strings. It is an NP-hard problem,

cannot be solved in polynomial time.1 When presented

with a NP-hard problem, we can take one of three

possible strategies: 1) Run a super-polynomial algorithm

anyway, 2) Assume that the input is random, and find an

algorithm that will perform well in the average case, 3)

Settle for a suboptimal solution (an approximation) that

can be found in polynomial time, and prove that this

solution is “good enough”. It addresses either the

simplest case of MLCS of two strings, also known as the

longest common subsequence (LCS) problem or the

problem’s special case of three strings . Although

several methods have been proposed for the general case

of any given number of strings they could benefit

greatly from improving their computation times. A

method that solves the general MLCS problem

efficiently can be applied to many computational

biology and computational genomics problems that deal

with biological sequences. With the increasing volume

of biological data and prevalent usage of computational

sequence analysis tools, we expect that the general

MLCS algorithm will have a significant impact on

computational biology methods and their applications.

In this paper, we present a fast algorithm for the MLCS

problem for any given number of sequences. The new

method is based on the dominant point approach.

Methods that solve MLCS using dominant points are

found to be more efficient, reducing the size of search

space by orders of magnitude, compared to classical

dynamic programming methods. In our method, we

implement a divide-and-conquer technique to construct

dominant point sets efficiently. Unlike other MLCS

algorithms, including FAST-LCS and parMLCS that

minimize entire dominant point set, our method

partitions them into independent subsets, where an

efficient divide-and conquer technique is applied.

Compared to the existing state-of-the-art MLCS

algorithms, our dominant-point algorithm is

significantly faster on the larger size problems, for

instance, for a set of strings of 1,000 letters each and

longer. We have also developed an efficient parallel

version of the algorithm, achieving a near-linear

speedup.

 International Journal on Advanced Computer Engineering and Communication Technology (IJACECT)

ISSN (Print): 2278-5140, Volume-1, Issue – 2, 2012

38

II. MLCS PROBLEM FORMULATION AND

EXISTING METHODS

In this section, we define the MLCS problem and

review existing sequential and parallel methods for

solving it.

A. Problem Definition

Definition 1. Let a be a sequence of length n over a

finite alphabet ∑: a = s1 s2 . . . sn ; si Є∑. Sequence b=si1

si2 . . . sik is called a subsequence of a, if j,1≤j≤k:

TABLE 1

Common Structures in Computational Biology and their

Approximate Size Ranges

 1≤ij ≤n;

and for all r and t, 1≤r < t≤k:

 ir < it:

Definition 2.Let S={a1,a2, . . .,ad}be a set of sequences

over a finite alphabet ∑. The MLCS for set S is a

sequence b such that:

1. b is a subsequence of ai for each i;

2. b is the longest among all sequence satisfying

 point 1.

In general, there may be more than one MLCS. For

example, given three sequences,

a1=i n f o r m a t i c s;

a2=p r o t e o m i c s;

a3=a r i t h m e t i c s:

one of the multiple longest common subsequences

is b1=r m i c s and another is b2=r t i c s. The LCS

problem is a special case of MLCS for two sequences.

Several important applications in computational biology

can be formulated as MLCS problems, and the alphabet

sizes and sequence lengths vary significantly, depending

on the biological domain (Table 1).

B. Dynamic Programming Methods

Classical methods for the MLCS problem are based

on dynamic programming. In its simplest case, given

two sequences a1 and a2 of length n1 and n2,

respectively, a dynamic programming algorithm

iteratively builds an n1xn2 score matrix L in which

L[i,j],0<i<n1,0<j<n2,is the length of an LCS between

two prefixes a1[1,…,i] and a2[1,…,j].specifically, the

score matrix L is defined as follows:

The definition of the matrix L can be naturally

generalized to a case of N sequences: for each position

L[i1, i2, . . . , iN],its value is defined through the

immediately preceding positions.

Once the score matrix L is computed, we can

extract MLCS by tracing back from the end point [n1,

n2] to the starting point [0, 0]. Let |MLCS| be the length

of an MLCS. It can be inferred that |MLCS |is equal to

the maximal value in L. Fig. 1 shows an example of

score matrix L for two sequences a1 =GATTACA and

a2 =GTAATCTAAC.

Fig. 1: The matrix L computed using (1) for two

sequences a1 = GATTACA and a2 = GTAATCTAAC.

The regions of the same entry values are bounded by

contours; the corner points of contours are dominant

points and are circled.

It is straightforward to calculate all entries in L

using dynamic programming. The resulting algorithm

has time and space complexity of O(n
d
) for d sequences

of length n. Various approaches have been introduced to

reduce the complexity of dynamic programming.

Unfortunately, these approaches primarily address a

special case of two sequences.

C. Dominant Point Methods

Let L be the score matrix for a set of d sequences

{a1, a2, . . . ,ad}over a finite alphabet ∑. A point p in

matrix L is denoted as p =[p1, p2, . . . , pd], where each pi

is a coordinate of p for the corresponding string ai. The

value at position p of the matrix L is denoted as L[p].

Definition 3. A point p =[p1,p2, . . . , pd] in L is called a

match if a1[p1] =a2[p2] =…….=ad[pd].

For example, for matrix L in Fig. 1, points [0, 0]

and [1, 2] are two matches, corresponding to symbols G

and A, respectively.

 International Journal on Advanced Computer Engineering and Communication Technology (IJACECT)

ISSN (Print): 2278-5140, Volume-1, Issue – 2, 2012

39

Definition 4. A point p=[p1,p2, . . . ,pd] dominates

another point q=[q1,q2, . . . , qd], if pi <qi, for all i=1, 2, . .

. , d. If d dominates q, we denote this relation as p <q.

Similarly, a point p=[p1, p2, . . . , pd] strongly

dominate another point q=[q1, q2, . . . , qd], if pi < qi, for

all i=1, 2,. . .,d. We denote this relation as p < q.

A point p=[p1,p2,…,pd] does not dominate a point

q=[q1,q2,…,qd](denoted as p<q),if i, 1<i<d,qi<pi.note

that p<q does not necessarily imply q<p, i.e., for some

points p and q ,p<q and q<p may be true at the same

time.

Definition 5. A match p is called a k-dominant point, or

simply k-dominant, or dominant at level k, if

1. L[p] = k;

2. there is no other match q; q=p, satisfying 1

dominates p(q< p).

The set of all k-dominants is denoted as Dk. The set

of all dominant points (that is, k-dominants for all k) is

denoted as D. In Fig. 1, regions of the same entry values

are bounded by contours. Corner points of these

contours are dominant points. They are the critical

points sufficient to define the overall contour shape.

Fig. 2. The process of dominant point approach for two

sequences a1 =GATTACA and a2 =GTAATCTAAC.

Broken lines are contours or boundary of different level

of points. Dominant points at the same level are

encircled together. Arrows in the figure point from the

set of k-dominants to the set of(k+1)-dominants,

1<k<|MLCS|<1.

The main idea behind the dominant point approach

is to identify exclusively the dominant point values

instead of identifying values of all positions in matrix L.

Specifically, the dominant point approach first computes

the set of all 1-dominants. As a general iteration step, a

set of (k+1)-dominants is calculated from a set of k-

dominants, 1<k<|MLCS|<1. Thus, by advancing from

one contour to another, all dominant points can be

obtained. A basic pseudocode for the dominant point

algorithm is provided in Appendix A.

Fig. 2 illustrates the process of dominant point

approach for the above two sequences a1 and a2. In Fig.

2, the dominant points of the same level are encircled

together. One dominant point [1,1] of level 1 is found at

the first step; at the second step, two dominant points

[2,3] and [3,2] of level 2 are detected based on the

previous dominant point set {1,1}, and so on. Arrows in

the figure point from the set of k-dominants to the set of

(k+1)-dominants, 1<k<|MLCS|-1.

The dominant point approach has been successfully

applied to a case of two sequences. In, three dominant

point algorithms for three or more sequences were

proposed. One of the algorithms, Algorithm A, which

was designed specifically for MLCS problems of three

sequences, is overwhelmingly faster than traditional

dynamic programming algorithms for three sequences.

However, Algorithm A finds dominant point sets by

enumerating points of the same coordinate values in

each dimension. As a result, its complexity increases

rapidly with growing number of sequences. The other

algorithm, Hakata and Imai’s C algorithm, works for

arbitrary number of strings. It is similar to another

MLCS algorithm published recently, FAST-LCS , in

that they both use a pair wise comparison algorithm to

compute the dominant points.

D. Parallel MLCS Methods

Many parallel MLCS algorithms have been

developed to speed up the computation .The majority of

them are designed for LCS problem of two sequences.

On CREWPRAM model, Apostolico et al. designed an

O(logmlogn) time algorithm with O(mn/logm)

processors, where m and n are lengths of two input

strings and m<n. Lu and Lin proposed two parallel

algorithms: one is an O(log
2
m+ logn)time algorithm

with mn/logm processors and the other is an O(logn)

time algorithm with mn/logn processors when Log
2

mloglogm<log n. Babu and Saxena improved these

algorithms, proposing an O(logm) time algorithm with

mn processors and an O(log
2
 n) time algorithm. Some

parallel algorithms use systolic arrays. Luce and

Myoupo derived a n+3m+p time algorithm with an array

of M(m+1)=2 cells. Freschi and Bogliolo computed the

LCS between run-length-encoded (RLE) strings. Their

algorithm executed in O(M+N) steps on a systolic array

of m+n units, where M and N are the number of runs in

their RLE representation. Optical bus has also been used

by some parallel algorithms. On LARPBS, Xu et al. [49]

presented an algorithm that used p processors and takes

O(mn/p) time, where 1<p<max(m,n).

 Only a few parallel algorithms have been proposed

for MLCS problems of three or more sequences. The

first parallel approach to tackle the general MLCS

problem could not achieve a consistent speedup on the

test set of multiple sequences. In the most recent

approaches, FASTLCS and parMLCS, a near-linear

speedup was reached for a large number of sequences.

 International Journal on Advanced Computer Engineering and Communication Technology (IJACECT)

ISSN (Print): 2278-5140, Volume-1, Issue – 2, 2012

40

parMLCS is a parallel version of Hakata and Imai’s C

algorithm.

III. A NEW FAST MLCS ALGORITHM, QUICK-DP

In this section, we present a new dominant point

algorithm for MLCS problem of any number of

sequences. For convenience, we assume below that

a1,a2, . . . ,ad are sequences over alphabet ∑, and the

lengths of all sequences are equal to n.

A. Sequential Algorithm Design

Definition 6. A match p is called an s-parent (a parent

with respect to the s symbol s Є∑) of a point q, if q < p

and there is no other match r of s such that q < r < p. We

denote the s-parent of q as q(s). The set of s-parent for q

is denoted as Par(q,s), i.e., Par(q,s) = {q(s)}. The set of

all s-parents for a set of points A is denoted as Par(A,s).

The set of all parents, Us Є∑Par(A,s), for A is denoted

as Par(A, ∑).

Definition 7. A point p in a set of points A is called a

minimal element of A, if for all q ∑A-{p} : q <p. If |A|

=1, then its single element is defined to be a minimal

element of A. The set of minimal elements is called the

minima of A.

It has been proven in that (k+1)-dominants, D
k+1

, 0

< k<|MLCS|-1, constitute exactly the minima of the

parent set Par(D
k
,)of k-dominants D

k
, i.e.,

D(k+1) =Minima(Par(D
k
, ∑)); where Minima() is an

algorithm that returns the minima of a set of points. The

pseudocode of our sequential dominant point algorithm

Quick-DP is presented in Fig. 3. Quick-DP consists of

two parts. In the first part, the set of all dominants is

calculated iteratively, starting from 0-dominant set

(containing one element). The set of (k +1)-

dominantsD
(k+1)

is obtained based on the set of k-

dominants D
k
. In the second part, a path corresponding

to an MLCS is found by tracing back through sets of

dominant points obtained in the first part of the

algorithm, starting with an element from the last

dominant set.

 If needed, all MLCS can be enumerated

≤systematically.quick-DP follows a two-step procedure

to compute the minima of the parent set Par(D
k
,∑):

1) For each dominant point q∑D
k
, compute

Minima(Par(q, ∑)) and take a union of all such sets,

 Pars = {q(s) |q(s)ЄMinima(Par(q,∑)); q ЄD
k
},sЄ∑:

2) Compute the union of nonoverlapping sets

Minima(Pars,sЄ∑.

Fig. 3: The pseudocode of our sequential algorithm

Quick-DP.

B. Implementation Details and Complexity Analysis

We add a preprocessing step in the beginning of the

algorithm to efficiently find all parents of each ominant

point. We calculate a preprocessing matrix T={T[s,j,i]};

sЄ∑, 0≤j ≤max1≤k≤dfjakjg; 1≤ i≤d, where each element

T[s,j,i] specifies the position of the first occurrence of

character s in the ith sequence, starting from the (j+ 1)st

position in that sequence. If s does not occur any more

in the ith sequence, the value of T[s,j,i] is equal to

1+max1≤k≤d{|ak|}. With the matrix T, the s-parent

p=[p1,p2, . . . ,pd] of a point q=[q1, q2, . . . ,qd] can be

calculated in O(d) time, using the formula pi = T(s,qi,

i),1≤id. The calculation of this preprocessing matrix T

takes O(n|∑| d) time, where |∑| is the size of alphabet ∑.

IV. A NEW PARALLEL MLCS ALGORITHM

Parallel Algorithm Design:

As shown in the previous section, calculating the

set of (k+1)-dominants D
k+1

 requires computing the

minima of parent set Par(q,∑), for qЄD
k
, and the

minima of s-parent set Pars, sЄ∑, of D
k
. These sets can

be calculated independently in parallel. Based on this

observation, we propose the following parallelization of

the sequential algorithm.

Given Np+1 processors, the parallel algorithm uses

one as the master and Np as slaves and performs the

following seven steps:

1. The master processor computes D
0
.

2. Every time the master processor computes a new set

D
k
 of k-dominants (k=1,2,3, . . .), it distributes

them evenly among all slave processors.

3. Each slave computes the set of parents and the

corresponding minima of k-dominants that it has,

 International Journal on Advanced Computer Engineering and Communication Technology (IJACECT)

ISSN (Print): 2278-5140, Volume-1, Issue – 2, 2012

41

and then, sends the result back to the master

processor.

4. The master processor collects each s-parent set

Pars, s 2 _, as the union of the parents from slave

processors and distributes the resulting s-parent set

among slaves.

Fig. 4 : The pseudocode of our parallel algorithm Quick-

DPPAR.

5. Each slave processor i is assigned to find the

minimal elements only of one s-parent set Pars.

 6. Each slave processor i computes the set Di
k+1

 of

(k+1)-dominants of Pars and sends it to the master.

7. The master processor computes D
k+1

 = D1
k+1

D2
k+1

 U

. . . UD
k+1

Np and goes to step 2.

 The pseudocode of the parallel algorithm Quick-

DPPAR is presented in Fig. 4.

In Quick-DPPAR, each s-parent set Pars; sЄ∑, of

Dk is assigned to a slave processor to compute the

minima of Pars using our divide-and-conquer method.

So, as many as|∑|slave processors can work

simultaneously in this step. To utilize more than |∑|

processors, it is necessary to parallelize the divide-and-

conquer algorithm. Two observations described

previously in the proof of Theorem 2 are intrinsic for the

parallel divide-and-conquer algorithm: 1) each set S is

evenly divided into two subsets Q and R to be

minimized independently; and 2) the minimization of Q

and R is much more time-consuming than the dividing

step (linear time).

Based on these observations, we developed a

parallel version of the divide-and-conquer algorithm.

The main idea of the algorithm is as follows: Let Proc0

be the master processor that starts the divide-and-

conquer algorithm.Proc0 split the set of N dominant

points evenly into two subsets Q and R and assign them

to two children processors, say Procq and Procr,

respectively, for the computation of their minima. Procq

and Procr can have their own children too. Thus, during

the recursive execution of the program, a binary tree is

formed based on this parentchildren relationship, with

processors as tree nodes. Given m processors, the depth

of the tree is at most logm. The leaf processors of the

tree run sequential divide-and-conquer algorithm.

V. CONCLUSION

We have mainly considered based on two

contributions: a new algorithm and parallelization of

that algorithm. Our theoretic analysis of the parallel

algorithm predicted that speedup is asymptotically

linear. In addition, the results of comparative

benchmarking of our parallel implementation and the

top current parallel approaches allow to suggest that our

algorithm is currently the fastest among any other

parallel implementations of a general MLCS algorithm.

Our next steps will be toward improving the method’s

efficiency to handle larger protein families. In particular,

we will aim to limit the algorithm’s search to a small

subset of the dominant set.

REFERENCES

[1] A pointing method of an object in real space using

dominant eye's view field, First IEEE Technical

Exhibition Based Conference, Robotics and

Automation, 2004. TExCRA '04. Mitsudo, Y.

Graduate Sch. of Information Syst., Miyazaki, E. ;

Idesawa, M.

[2] Finite Automata Inspired Model for Dominant Point

Detection: A Non-Parametric Approach, International

Conference on Computing: Theory and Applications,

2007. ICCTA '07. Dinesh, R. Dept. of Studies in

Comput. Sci., Mysore Univ., Karnataka

[3] New dominant point detection for image recognition,

Circuits and Systems, 1999. ISCAS '99. Proceedings of

the 1999 IEEE International Symposium, Chun-Pong

Chau.

[4] Fast subspace-based tensor data filtering, 16th IEEE

International Conference on Image Processing (ICIP),

2009,

MaroJ. Ecole Centrale Marseille-Inst. Fresnel,

Marseille, France

[5] Approximate dynamic programming of continuous

annealing process IEEE International Conference on

Automation and Logistics, 2009. ICAL'09. Chao Guo ;

 Xue.

[6] A novel service recovery method based upon Bellman

dynamic programming, International Conference on

Computer and Information Application (ICCIA), 2010

Coll. of Comput. Sci. & Technol., Harbin Eng. Univ.,

Harbin, China Wang Hui-qiang; Guangsheng Feng

 International Journal on Advanced Computer Engineering and Communication Technology (IJACECT)

ISSN (Print): 2278-5140, Volume-1, Issue – 2, 2012

42

[7] A Survey of Approximate Dynamic Programming,

International Conference on Intelligent Human-

Machine Systems and Cybernetics, 2009. IHMSC '09.

Coll. of Mechatron. Eng. & Autom., Nat. Univ. of

Defense Technol., Changsha, China

Peng Hui ; Zhu Hua-yong ; Shen Lin-cheng

[8] L.J. Bentley, “Multidimensional Divide-and-Conquer,”

Comm.ACM, vol. 23, no. 4, pp. 214-229, 1980.

[9] Y. Chen, A. Wan, and W. Liu, ”A Fast Parallel

Algorithm for Finding the Longest Common Sequence

of Multiple Biosequences,” BMC Bioinformatics, vol.

7, p. S4, 2006.

[10] K. Hakata and H. Imai, “Algorithms for the Longest

Common Subsequence Problem for Multiple Strings

Based on Geometric Maxima,” Optimization Methods

and Software, vol. 10, pp. 233-260, 1998.

[11] D. Korkin, Q. Wang, and Y. Shang, “An Efficient

Parallel Algorithm for the Multiple Longest Common

Subsequence (MLCS) Problem,” Proc. 37th Int’l Conf.

Parallel Processing (ICPP ’08), pp. 354-363, 2008.

[12] X. Xu, L. Chen, Y. Pan, and P. He, “Fast Parallel

Algorithms for the Longest Common Subsequence

Problem Using an Optical Bus,”Lecture Notes in

Computer Science, pp. 338-348, Springer, 2005.



