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Abstract – In many applications of bioinformatics and 

computational genomics, the discovery of the longest 

common subsequence (LCS) of multiple strings is an NP-

hard problem which cannot be solved in polynomial time. 

As the rapid growth of size and complexity of biological 

data increasing, significant efforts have been made and 

enhancements are made for the efficiency to an arbitrary 

number of strings. In order to address these issues, we 

present an algorithm for the multiple LCS (or MLCS) 

problem, on discovering an LCS of any number of strings, 

and its parallel realization. This is based on the dominant 

point approach and employs a fast divide-and conquer 

technique to compute the dominant points. Our algorithm 

demonstrates the same performance as the fastest existing 

MLCS algorithm designed for a case of three strings. On 

the other hand for more than three strings, our algorithm 

is significantly faster than the best existing sequential 

methods, reaching up to 2-3 orders of magnitude faster 

speed on large-size problems. Also it reveals that a near-

linear speedup has occurring with respect to the sequential 

algorithm on applying to random and biological sequences. 

 

Keywords – longest common subsequence (LCS), multiple 

longest common subsequence (MLCS), dynamic 

programming, dominant point method, divide and conquer, 

multithreading. 

 

I. INTRODUCTION 

The multiple longest common subsequence problem 

(MLCS) is to find the longest subsequence shared 

between two or more strings. It is an NP-hard problem, 

cannot be solved in polynomial time.1 When presented 

with a NP-hard problem, we can take one of three 

possible strategies: 1) Run a super-polynomial algorithm 

anyway, 2) Assume that the input is random, and find an 

algorithm that will perform well in the average case, 3) 

Settle for a suboptimal solution (an approximation) that 

can be found in polynomial time, and prove that this 

solution is “good enough”. It addresses either the 

simplest case of MLCS of two strings, also known as the 

longest common subsequence (LCS) problem or the 

problem’s special case of three strings . Although 

several methods have been proposed for the general case 

of any given number of strings they could benefit 

greatly from improving their computation times. A 

method that solves the general MLCS problem 

efficiently can be applied to many computational 

biology and computational genomics problems that deal 

with biological sequences. With the increasing volume 

of biological data and prevalent usage of computational 

sequence analysis tools, we expect that the general 

MLCS algorithm will have a significant impact on 

computational biology methods and their applications. 

In this paper, we present a fast algorithm for the MLCS 

problem for any given number of sequences. The new 

method is based on the dominant point approach. 

Methods that solve MLCS using dominant points are 

found to be more efficient, reducing the size of search 

space by orders of magnitude, compared to classical 

dynamic programming methods. In our method, we 

implement a divide-and-conquer technique to construct 

dominant point sets efficiently. Unlike other MLCS 

algorithms, including FAST-LCS and parMLCS that 

minimize entire dominant point set, our method 

partitions them into independent subsets, where an 

efficient divide-and conquer technique is applied. 

Compared to the existing state-of-the-art MLCS 

algorithms, our dominant-point algorithm is 

significantly faster on the larger size problems, for 

instance, for a set of strings of 1,000 letters each and 

longer. We have also developed an efficient parallel 

version of the algorithm, achieving a near-linear 

speedup. 
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II. MLCS PROBLEM FORMULATION AND 

EXISTING METHODS 

In this section, we define the MLCS problem and 

review existing sequential and parallel methods for 

solving it. 

A. Problem Definition 

Definition 1. Let a be a sequence of length n over a 

finite alphabet ∑: a = s1 s2 . . . sn ; si Є∑. Sequence b=si1 

si2 . . . sik is called a subsequence of a, if j,1≤j≤k: 

TABLE 1 

Common Structures in Computational Biology and their 

Approximate Size Ranges 

 

                       1≤ij ≤n; 

and for all r and t,  1≤r < t≤k: 

                       ir < it: 

Definition 2.Let S={a1,a2, . . .,ad}be a set of sequences 

over a finite alphabet ∑. The MLCS for set S is a 

sequence b such that: 

1.  b is a subsequence of ai for each i; 

2.  b is the longest among all sequence satisfying  

 point 1. 

In general, there may be more than one MLCS. For 

example, given three sequences, 

a1=i n f o r m a t i c s; 

a2=p r o t e o m i c s; 

a3=a r i t h m e t i c s: 

one of the multiple longest common subsequences 

is b1=r m i c s and another is b2=r t i c s. The LCS 

problem is a special case of MLCS for two sequences. 

Several important applications in computational biology 

can be formulated as MLCS problems, and the alphabet 

sizes and sequence lengths vary significantly, depending 

on the biological domain (Table 1). 

B. Dynamic Programming Methods 

Classical methods for the MLCS problem are based 

on dynamic programming. In its simplest case, given 

two sequences a1 and a2 of length n1 and n2, 

respectively, a dynamic programming algorithm 

iteratively builds an n1xn2 score matrix L in which 

L[i,j],0<i<n1,0<j<n2,is the length of an LCS between 

two prefixes a1[1,…,i] and a2[1,…,j].specifically, the 

score matrix L is defined as follows: 

 

The definition of the matrix L can be naturally 

generalized to a case of N sequences: for each position 

L[i1, i2, . . . , iN],its value is defined through the 

immediately preceding positions. 

Once the score matrix L is computed, we can 

extract MLCS by tracing back from the end point [n1, 

n2] to the starting point [0, 0]. Let |MLCS| be the length 

of an MLCS. It can be inferred that |MLCS |is equal to 

the maximal value in L. Fig. 1 shows an example of 

score matrix L for two sequences a1 =GATTACA and 

a2 =GTAATCTAAC. 

 

Fig. 1: The matrix L computed using (1) for two 

sequences a1 = GATTACA and a2 = GTAATCTAAC. 

The regions of the same entry values are bounded by 

contours; the corner points of contours are dominant 

points and are circled. 

It is straightforward to calculate all entries in L 

using dynamic programming. The resulting algorithm 

has time and space complexity of O(n
d
) for d sequences 

of length n. Various approaches have been introduced to 

reduce the complexity of dynamic programming. 

Unfortunately, these approaches primarily address a 

special case of two sequences. 

C. Dominant Point Methods 

Let L be the score matrix for a set of d sequences 

{a1, a2, . . . ,ad}over a finite alphabet ∑. A point p in 

matrix L is denoted as p =[p1, p2, . . . , pd], where each pi 

is a coordinate of p for the corresponding string ai. The 

value at position p of the matrix L is denoted as L[p]. 

Definition 3. A point p =[p1,p2, . . . , pd] in L is called a 

match if a1[p1] =a2[p2] =…….=ad[pd]. 

For example, for matrix L in Fig. 1, points [0, 0] 

and [1, 2] are two matches, corresponding to symbols G 

and A, respectively.  
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Definition 4. A point p=[p1,p2, . . . ,pd] dominates 

another point q=[q1,q2, . . . , qd], if pi <qi, for all i=1, 2, . . 

. , d. If d dominates q, we denote this relation as p <q.  

Similarly, a point p=[p1, p2, . . . , pd] strongly 

dominate another point q=[q1, q2, . . . , qd], if pi < qi, for 

all i=1, 2,. . .,d. We denote this relation as p < q.  

A point p=[p1,p2,…,pd] does not dominate a point 

q=[q1,q2,…,qd](denoted as p<q),if i, 1<i<d,qi<pi.note 

that  p<q does not necessarily imply q<p, i.e., for some 

points p and q ,p<q and q<p may be true at the same 

time. 

Definition 5. A match p is called a k-dominant point, or 

simply k-dominant, or dominant at level k, if 

1.  L[p] = k; 

2.  there is no other match q; q=p, satisfying 1 

dominates p(q< p). 

The set of all k-dominants is denoted as Dk. The set 

of all dominant points (that is, k-dominants for all k) is 

denoted as D. In Fig. 1, regions of the same entry values 

are bounded by contours. Corner points of these 

contours are dominant points. They are the critical 

points sufficient to define the overall contour shape. 

 

Fig. 2. The process of dominant point approach for two 

sequences a1 =GATTACA and a2 =GTAATCTAAC. 

Broken lines are contours or boundary of different level 

of points. Dominant points at the same level are 

encircled together. Arrows in the figure point from the 

set of k-dominants to the set of( k+1)-dominants, 

1<k<|MLCS|<1. 

The main idea behind the dominant point approach 

is to identify exclusively the dominant point values 

instead of identifying values of all positions in matrix L. 

Specifically, the dominant point approach first computes 

the set of all 1-dominants. As a general iteration step, a 

set of (k+1)-dominants is calculated from a set of k-

dominants, 1<k<|MLCS|<1. Thus, by advancing from 

one contour to another, all dominant points can be 

obtained. A basic pseudocode for the dominant point 

algorithm is provided in Appendix A. 

Fig. 2 illustrates the process of dominant point 

approach for the above two sequences a1 and a2. In Fig. 

2, the dominant points of the same level are encircled 

together. One dominant point [1,1] of level 1 is found at 

the first step; at the second step, two dominant points 

[2,3] and [3,2] of level 2 are detected based on the 

previous dominant point set {1,1}, and so on. Arrows in 

the figure point from the set of k-dominants to the set of 

(k+1)-dominants, 1<k<|MLCS|-1. 

The dominant point approach has been successfully 

applied to a case of two sequences. In, three dominant 

point algorithms for three or more sequences were 

proposed. One of the algorithms, Algorithm A, which 

was designed specifically for MLCS problems of three 

sequences, is overwhelmingly faster than traditional 

dynamic programming algorithms for three sequences. 

However, Algorithm A finds dominant point sets by 

enumerating points of the same coordinate values in 

each dimension. As a result, its complexity increases 

rapidly with growing number of sequences. The other 

algorithm, Hakata and Imai’s C algorithm, works for 

arbitrary number of strings. It is similar to another 

MLCS algorithm published recently, FAST-LCS , in 

that they both use a pair wise comparison algorithm to 

compute the dominant points. 

D. Parallel MLCS Methods 

Many parallel MLCS algorithms have been 

developed to speed up the computation .The majority of 

them are designed for LCS problem of two sequences. 

On CREWPRAM model, Apostolico et al. designed an 

O(logmlogn) time algorithm with O(mn/logm) 

processors, where m and n are lengths of two input 

strings and m<n. Lu and Lin proposed two parallel 

algorithms: one is an O(log
2
m+ logn)time algorithm 

with mn/logm processors and the other is an O(logn) 

time algorithm with mn/logn processors when Log
2
 

mloglogm<log n. Babu and Saxena improved these 

algorithms, proposing an O(logm) time algorithm with 

mn processors and an O(log
2
 n) time algorithm. Some 

parallel algorithms use systolic arrays. Luce and 

Myoupo derived a n+3m+p time algorithm with an array 

of M(m+1)=2 cells. Freschi and Bogliolo computed the 

LCS between run-length-encoded (RLE) strings. Their 

algorithm executed in O(M+N) steps on a systolic array 

of m+n units, where M and N are the number of runs in 

their RLE representation. Optical bus has also been used 

by some parallel algorithms. On LARPBS, Xu et al. [49] 

presented an algorithm that used p processors and takes 

O(mn/p) time, where 1<p<max(m,n). 

 Only a few parallel algorithms have been proposed 

for MLCS problems of three or more sequences. The 

first parallel approach to tackle the general MLCS 

problem could not achieve a consistent speedup on the 

test set of multiple sequences. In the most recent 

approaches, FASTLCS and parMLCS, a near-linear 

speedup was reached for a large number of sequences. 
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parMLCS is a parallel version of Hakata and Imai’s C 

algorithm. 

III. A NEW FAST MLCS ALGORITHM, QUICK-DP 

In this section, we present a new dominant point 

algorithm for MLCS problem of any number of 

sequences. For convenience, we assume below that 

a1,a2, . . . ,ad are sequences over alphabet ∑, and the 

lengths of all sequences are equal to n. 

A. Sequential Algorithm Design 

Definition 6. A match p is called an s-parent (a parent 

with respect to the s symbol s Є∑) of a point q, if q < p 

and there is no other match r of s such that q < r < p. We 

denote the s-parent of q as q(s). The set of s-parent for q 

is denoted as Par(q,s), i.e., Par(q,s) = {q(s)}. The set of 

all s-parents for a set of points A is denoted as Par(A,s). 

The set of all parents, Us Є∑Par(A,s), for A is denoted 

as Par(A, ∑). 

Definition 7. A point p in a set of points A is called a 

minimal element of A, if for all q ∑A-{p} : q <p. If |A| 

=1, then its single element is defined to be a minimal 

element of A. The set of minimal elements is called the 

minima of A. 

It has been proven in that (k+1)-dominants, D
k+1

, 0 

< k<|MLCS|-1, constitute exactly the minima of the 

parent set Par(D
k
, )of k-dominants D

k
, i.e.,               

D(k+1) =Minima(Par(D
k
, ∑)); where Minima() is an 

algorithm that returns the minima of a set of points. The 

pseudocode of our sequential dominant point algorithm 

Quick-DP is presented in Fig. 3. Quick-DP consists of 

two parts. In the first part, the set of all dominants is 

calculated iteratively, starting from 0-dominant set 

(containing one element). The set of (k +1)-

dominantsD
(k+1) 

is obtained based on the set of k-

dominants D
k
. In the second part, a path corresponding 

to an MLCS is found by tracing back through sets of 

dominant points obtained in the first part of the 

algorithm, starting with an element from the last 

dominant set.  

 If needed, all MLCS can be enumerated 

≤systematically.quick-DP follows a two-step procedure 

to compute the minima of the parent set Par(D
k
,∑):  

1) For each dominant point q∑D
k
, compute 

Minima(Par(q, ∑)) and take a union of all such sets, 

 Pars = {q(s) |q(s)ЄMinima(Par(q,∑)); q ЄD
k
},sЄ∑: 

2) Compute the union of nonoverlapping sets 

Minima(Pars,sЄ∑.  

 

 

 

Fig. 3: The pseudocode of our sequential algorithm 

Quick-DP. 

B. Implementation Details and Complexity Analysis 

We add a preprocessing step in the beginning of the 

algorithm to efficiently find all parents of each  ominant 

point. We calculate a preprocessing matrix T={T[s,j,i]}; 

sЄ∑, 0≤j ≤max1≤k≤dfjakjg; 1≤ i≤d, where each element 

T[s,j,i] specifies the position of the first occurrence of 

character s in the ith sequence, starting from the (j+ 1)st 

position in that sequence. If s does not occur any more 

in the ith sequence, the value of T[s,j,i] is equal to 

1+max1≤k≤d{|ak|}. With the matrix T, the s-parent 

p=[p1,p2, . . . ,pd] of a point q=[q1, q2, . . . ,qd] can be 

calculated in O(d) time, using the formula pi = T(s,qi, 

i),1≤id. The calculation of this preprocessing matrix T 

takes O(n|∑| d) time, where |∑| is the size of alphabet ∑. 

IV. A NEW PARALLEL MLCS ALGORITHM 

Parallel Algorithm Design: 

As shown in the previous section, calculating the 

set of (k+1)-dominants D
k+1

 requires computing the 

minima of parent set Par(q,∑), for qЄD
k
, and the 

minima of s-parent set Pars, sЄ∑, of D
k
. These sets can 

be calculated independently in parallel. Based on this 

observation, we propose the following parallelization of 

the sequential algorithm. 

Given Np+1 processors, the parallel algorithm uses 

one as the master and Np as slaves and performs the 

following seven steps: 

1.  The master processor computes D
0
. 

2.  Every time the master processor computes a new set 

D
k
 of k-dominants (k=1,2,3, . . . ), it distributes 

them evenly among all slave processors. 

3.  Each slave computes the set of parents and the 

corresponding minima of k-dominants that it has, 
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and then, sends the result back to the master 

processor. 

4.  The master processor collects each s-parent set 

Pars, s 2 _, as the union of the parents from slave 

processors and distributes the resulting s-parent set 

among slaves. 

 

 

Fig. 4 : The pseudocode of our parallel algorithm Quick-

DPPAR. 

5.  Each slave processor i is assigned to find the 

minimal elements only of one s-parent set Pars.      

 6.  Each slave processor i computes the set Di
k+1

 of 

(k+1)-dominants of Pars and sends it to the master. 

7.  The master processor computes D
k+1

 = D1
k+1 

D2
k+1

 U 

. . . UD
k+1 

Np and goes to step 2. 

 The pseudocode of the parallel algorithm Quick-

DPPAR is presented in Fig. 4. 

In Quick-DPPAR, each s-parent set Pars; sЄ∑, of 

Dk is assigned to a slave processor to compute the 

minima of Pars using our divide-and-conquer method. 

So, as many as|∑|slave processors can work 

simultaneously in this step. To utilize more than |∑| 

processors, it is necessary to parallelize the divide-and-

conquer algorithm. Two observations described 

previously in the proof of Theorem 2 are intrinsic for the 

parallel divide-and-conquer algorithm: 1) each set S is 

evenly divided into two subsets Q and R to be 

minimized independently; and 2) the minimization of Q 

and R is much more time-consuming than the dividing 

step (linear time).  

Based on these observations, we developed a 

parallel version of the divide-and-conquer algorithm. 

The main idea of the algorithm is as follows: Let Proc0 

be the master processor that starts the divide-and-

conquer algorithm.Proc0 split the set of N dominant 

points evenly into two subsets Q and R and assign them 

to two children processors, say Procq and Procr, 

respectively, for the computation of their minima. Procq 

and Procr can have their own children too. Thus, during 

the recursive execution of the program, a binary tree is 

formed based on this parentchildren relationship, with 

processors as tree nodes. Given m processors, the depth 

of the tree is at most logm. The leaf processors of the 

tree run sequential divide-and-conquer algorithm. 

V. CONCLUSION 

We have mainly considered based on two 

contributions: a new algorithm and parallelization of 

that algorithm. Our theoretic analysis of the parallel 

algorithm predicted that speedup is asymptotically 

linear. In addition, the results of comparative 

benchmarking of our parallel implementation and the 

top current parallel approaches allow to suggest that our 

algorithm is currently the fastest among any other 

parallel implementations of a general MLCS algorithm. 

Our next steps will be toward improving the method’s 

efficiency to handle larger protein families. In particular, 

we will aim to limit the algorithm’s search to a small 

subset of the dominant set.  
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