

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

47

A Systematic Literature Review on Software Fault Prediction

based on Qualitative and Quantitative Factors

Gurvinder Singh
1
, Baljit Singh Saini

2
 & Neeraj Mohan

3

1&2
LPU, Phagwara,

3
RBIEBT, Sahauran

Abstract – The growing demand for higher operational

effectiveness and reliability in industrial processes has

resulted in a huge attention in fault detection techniques.

Researcher and practitioners are remains concerned with

correct prediction when developing systems. On the other

hand the most popular research area is software fault or

fault prediction. Software fault prediction has both

security and financial benefits in technical systems by

preventing future failures and further improves process

upholding schedules. Software fault prediction facilitates

to software engineers to attention development activities on

defect less code which enhance the software quality and

minimize the cost and time to develop software system in

today’s era of dynamic scenario of globalization. There are

many prediction models which are used to filter the

software defects. The present study empirically explorers

the viability of reducing the software defect prediction

based on qualitative and quantitative factors. Further, the

study attempts to offer the future prospective in other

dimensions like programming languages and for mapping

the relation of attributes and fault tolerance.

Keywords – Software defect, Fault Prediction, Fault

Proneness.

I. INTRODUCTION

 The ideal prediction of faults in software are

expected to occur in code can help direct testing effort,

minimize expenses and recover the quality of software.

Our aim is to explore how the context models and

independent variables used and the modeling techniques

functional, manipulate the performance of fault

prediction models. A software quality model is a useful

tool for meeting the objectives of software reliability

and software testing initiatives of different projects [1].

Different Modeling techniques can be used to identify

fault free modules [2].

 Absence of sufficient tools to guess and evaluate

the price for a software system failure is one of the main

challenges in software engineering. They used old

dataset of software to make and authenticate estimation

or prediction system of software development efforts,

which allows them to compose management decisions,

such as resource allocation. The use of single feature of

software to predict faults is not helpful. Fenton uses an

example where the same program functionality is

achieved using dissimilar programming language

constructs resulting in dissimilar static measurements

for that module [3]. Fenton uses this example to argue

the uselessness of static code attributes. However, where

single feature fail and combination succeed [4], Hence

combination of static features extracted from

requirements and code can be good predictors for

identifying modules that actually contains fault.

 When we use machine learning methods to make

such predication systems, poor data quality in either

training set or test set or both sets, can affect prediction

accuracy. Various machine learning algorithms has been

used in systems engineering to predict faults, software

project development effort, software quality and

software defects. Evaluation of the use of machine

learning in software engineering report that machine

learning in software engineering is a mature methods

based on mostly available tools using well understood

algorithms. The decision tree (DT) classifier is an

example of a machine learning algorithm that can be

used for predicting continuous attributes (regression) or

categorical attributes (classification). Thus, software

prediction can be cast as a supervised learning problem,

i.e., the process of learning to separate samples from

dissimilar classes by finding features between samples

of known classes. Software quality models ensure the

reliability of the delivered products. It has become vital

to develop and implement good software quality models

early in the software development life cycle, especially

for large scale development efforts.

 Software quality prediction models seek to predict

quality aspect such as whether a component is fault

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

48

prone or not. Methods for identifying fault prone

software modules support helps to improve resource

planning and scheduling as facilitating cost avoidance

by efficient verification. Such models can be used to

predict the response variable which can either be the

class of a module (e.g. fault-prone or not fault-prone) or

a quality factor (e.g. number of faults) for a module. The

basic hypothesis of software quality prediction is that

software currently under development is fault prone if a

module with the similar product or process metrics in

previous project developed in the same environment was

fault free. Therefore, the figures available early within

the existing project or from the earlier project can be

used in making predictions. This technique is very

useful for the large-scale projects or projects with

multiple revisions.

II. LITERATURE REVIEW

 Statistical methods, machine learning method, and

mixed techniques are widely used in literature to predict

software faults.

Table-1

Fujimaki (2005) Koru and Tian (2005)

Bellini et al (2005) Yan Ma et al. (2007)

Seliya N. et al (2005)
Norman Fenton, et al

(2007)

Ceylan E. et al.

(2006)

Chaudhary Pree, et al

(2012)

Seliya N et al (2007)
Kaur Arashdeep, et al

(2011)

Jiang et al.(2007) Challagulla et al.(2005)

III. SOFTWARE FAULT, FAULT, FAILURE

 Faults contain in software systems and it continue

to work, is a major problem in future. A software bug is

an error, flaw, mistake, failure, or fault in a computer

program that prevents it from behaving as intended (e.g.,

producing an incorrect result). A software fault is a

deficiency that causes software failure in an executable

product. In software engineering, the non-conformance

of software to its requirements is commonly called a

bug. Most bugs arise from mistakes and errors made by

people in either a program's source code or in its design,

and a few are caused by compilers producing incorrect

object code. Meaningful the causes of possible defects

as well as identifying general software process areas that

may need attention from the initialization of a project

could save capital, time and effort. The possibility of

early estimating the potential faultiness of software

could help on planning, controlling and executing

software development activities. Software is said to be

faulty if we feed some input and it produce incorrect

output. For each execution of the software program

where the output is incorrect, a failure is observed.

Software engineers distinguish software faults from

software failures. In case of a failure, the software does

not do what the user expects but on the other hand fault

is a hidden programming error that may or may not

actually evident as a failure. A fault can also be

described as an error in the correctness of the semantic

of a computer program. A fault will become a failure if

the exact computation conditions are met, one of them

being that the faulty portion of computer software

executes on the CPU. A fault can also turn into a failure

when the software is ported to a different hardware

platform or a different compiler, or when the software

gets extended. Software faults are all due to human

errors in creating the software. The following depicts the

types of failure with its description.

Table-2

Failure class Description

Transient Occurs only with certain inputs

Permanent Occurs with all inputs

Recoverable
System can recover without

operator intervention

Unrecoverable

Operator intervention is required

to recover from failure

Non-

corrupting

Failure does not corrupt system

state or data

Corrupting
Failure corrupts system state or

data

IV. RATIONALE OF THE STUDY

 The increasing demand for higher preparation

competency and security in engineering processes has

resulted in huge interest in fault-detection techniques.

Engineering researchers and practitioners remain

concerned with accurate prediction on qualitative and

quantitative factors. So it is in this environment

Software quality prediction models seek to predict

quality factors such as whether a component is fault

prone or not, despite earlier attempts to estimate the

fault prediction, the less stress has been paid on the

reducing of the software defect and predicting it before

occurred. Thus the study is a significant attempt that

will be helpful for the prediction of faults.

V. OBJECTIVE OF THE STUDY

 Find best machine learning algorithm for Software

Fault Prediction Based on Quantitative and Qualitative

Factors. The Comparison criteria for the different

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

49

algorithms are based on the Mean absolute error (MAE),

Root mean square error (RMSE) Values and accuracy.

VI. RESEARCH METHODOLOGY

 The methodology consists of the following steps:

A. To find the Qualitative and Quantitative attributes

of software systems.

 The first step is to find the Qualitative and

Quantitative factors of software systems i.e. software

metrics. The real-time defect data sets are taken from

data repository, available online at:

http://promisedata.googlecode.com/svn/trunk/defect/.

B. To Select the suitable metric values as

representation of statement.

 The suitable metrics like product requirement

metrics and product module metrics out of these data

sets are considered. The term product is used referring

to module level data. The term metrics data applies to

any finite numeric values, which describe measured

qualities and characteristics of a product. The term

product refers to anything to which defect data and

metrics data can be associated.

C. Analyze, refine metrics and normalize the metric

values and Explore performance of Machine

Learning Algorithms.

 In this step the metric values are analyzed, refined

and normalized for the better learning. Thereafter,

Machine learning algorithm has best result are selected

for experimented with that dataset.

VII. COMPARISON OF ALGORITHMS

 The comparisons are made on the basis of the more

accuracy and least value of MAE and RMSE error

values. Accuracy value of the prediction model is the

major criteria used for comparison. The mean absolute

error is chosen as the standard error. The technique

having lower value of mean absolute error is chosen as

the best fault prediction technique.

A. Mean absolute error

 Mean absolute error, MAE is the average of the

difference between predicted and actual value in all test

cases; it is the average prediction error. The formula for

calculating MAE is given in equation

Figure-1

Assuming that the actual output is a, expected output is

c.

B. Root mean-squared error

 RMSE is frequently used measure of differences

between values predicted by a model or estimator and

the values actually observed from the thing being

modeled or estimated. It is just the square root of the

mean square error as shown in equation

Figure-2

 The mean-squared error is one of the most

commonly used measures of success for numeric

prediction. This value is computed by taking the average

of the squared differences between each computed value

and its corresponding correct value. The root mean-

squared error is simply the square root of the mean-

squared-error. The root mean-squared error gives the

error value the same dimensionality as the actual and

predicted values.

VIII. RESULTS

 The first step is to find the structural code and

prerequisite attributes of software systems i.e. software

metrics. The real-time defect data sets are taken from

http://promisedata.org/repository.

A. Qualitative factors

 The Quantitative factors are grouped under five

topics:

1) Specification and Documentation process

2) New Functionality

3) Design and Development process

4) Testing and Rework

5) Project Management

B. Quantitative Factors

 The following are the Quantitative factors are:

i) Software size: the size, in KLoC of the developed

code and the development language.

ii) Effort: development effort measured in person

hours for the software development, from

specification review to unit test.

 The best learning algorithm is implemented in

WEKA environment is one such facility which lends a

high performance language for technical computing.

 The following parameters are used for building the

model and the values used in the experiment:

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

50

a) CrossVal -- Sets the number of folds for cross

validation (1 = leave one out).

b) Debug -- If set to true, classifier may output

additional info to the console.

c) Display Rules -- Sets whether rules are to be

printed.

d) Evaluation Measure -- The measure used to

evaluate the performance of attribute combinations

used in the decision table.

e) search -- The search method used to find good

attribute combinations for the decision table.

f) useIBk -- Sets whether IBk should be used instead

of the majority class.

IX. CONCLUSION

 Software Fault prediction is an important topic in

software engineering. Software Fault prediction models

have the potential to improve the quality of software

systems and reduce the expenditure related with

delivering those systems. The study evaluated the

performance of various machine learning techniques for

the fault dataset. Techniques have shown better results

than other algorithms with lower values of MAE, RMSE

and accuracy is implemented using WEKA.

 Despite a set of fault prediction studies, there is

need to explore and have more research studies with

reliable methodology and practical applicability in other

dimension like programming languages and for mapping

the relation of features and fault tolerance so that

software defects could be forecasted and mitigated at the

very genesis

X. REFERENCES

[1] Seliya N., Khoshgoftaar T.M. and Zhong S.

(2005), “Analyzing software quality with limited

fault-proneness defect data”, in proceedings of

the Ninth IEEE international Symposium on High

Assurance System Engineering, Germany, pp.

89-98.

[2] Jiang Y., Cukic B. and Menzies T. (2007), “Fault

Prediction Using Early Lifecycle Data”. ISSRE

2007, the 18th IEEE Symposium on Software

Reliability Engineering, IEEE Computer Society,

Sweden, pp. 237-246.

[3] Bezdek J.C., Ehrlich R., and Full W. (1984)

“FCM: Fuzzy c-means algorithm”. Computers

and Geoscience, Volume: 10, pp. 191-203.

[4] A Systematic Literature Review on

FaultPrediction Performance in Software

Engineering Tracy Hall, Sarah Beecham, David

Bowes, David Gray and Steve Counsell.

[5] Challagula, Bastani B. and Yen (2006). “A

Unified framework for Defect Data Analysis

using the MBR Technique”. Proceedings of the

18th IEEE International Conference on Tools

with Artificial Intelligence (ICTAI'06),

Washington, pp. 39-46.

[6] Ma Y. and Guo L. (2006), “A Statistical

Framework for the Prediction of Fault-

Proneness”, Product Focused Process

Improvement, Edition: First, Publisher: Springer

Berlin/Heidelberg, pp. 204-214.

[7] Bellini P. (2005), “Comparing Fault-Proneness

Estimation Models”, 10th IEEE International

Conference on Engineering of Complex

Computer Systems (ICECCS'05), China, pp. 205-

214.

[8] Challagulla V.U.B., Bastani F.B., Yen I. L. and

Paul (2005) “Empirical assessment of machine

learning based software defect prediction

techniques”, 10th IEEE International Workshop

on Object-Oriented Real-Time Dependable

Systems, USA, pp. 263-270.

[9] Seliya N., Khoshgoftaar T.M. and Zhong S.

(2005), op cit.

[10] Norman Fenton, Martin Neil, William Marsh,

Peter Hearty, Lukasz Radlinski, Paul Krause,

“Project Data Incorporating Qualitative Factors

for Improved Software Defect”, Proceedings of

the PROMISE workshop, Year: 2007.

[11] Chaudhary Preeti, Mohan Neeraj, Sandhu

Parvinder S. “An Empirical Assessment for

Software Defect Forecast on Qualitative and

Quantitative Factors using Simple Decision Table

Majority Classifier”, International Journal of

Research in Engineering and Technology

(IJRET) Vol. 1, No. 3, 2012 ISSN 2277 – 4378

189.



