A Systematic Literature Review on Software Fault Prediction

based on Qualitative and Quantitative Factors

Gurvinder Singh®, Baljit Singh Saini’ & Neeraj Mohan®
12| py, Phagwara, *RBIEBT, Sahauran

Abstract — The growing demand for higher operational
effectiveness and reliability in industrial processes has
resulted in a huge attention in fault detection techniques.
Researcher and practitioners are remains concerned with
correct prediction when developing systems. On the other
hand the most popular research area is software fault or
fault prediction. Software fault prediction has both
security and financial benefits in technical systems by
preventing future failures and further improves process
upholding schedules. Software fault prediction facilitates
to software engineers to attention development activities on
defect less code which enhance the software quality and
minimize the cost and time to develop software system in
today’s era of dynamic scenario of globalization. There are
many prediction models which are used to filter the
software defects. The present study empirically explorers
the viability of reducing the software defect prediction
based on qualitative and quantitative factors. Further, the
study attempts to offer the future prospective in other
dimensions like programming languages and for mapping
the relation of attributes and fault tolerance.

Keywords — Software defect, Fault

Proneness.

Fault Prediction,

I. INTRODUCTION

The ideal prediction of faults in software are
expected to occur in code can help direct testing effort,
minimize expenses and recover the quality of software.
Our aim is to explore how the context models and
independent variables used and the modeling techniques
functional, manipulate the performance of fault
prediction models. A software quality model is a useful
tool for meeting the objectives of software reliability
and software testing initiatives of different projects [1].
Different Modeling techniques can be used to identify
fault free modules [2].

Absence of sufficient tools to guess and evaluate
the price for a software system failure is one of the main
challenges in software engineering. They used old

dataset of software to make and authenticate estimation
or prediction system of software development efforts,
which allows them to compose management decisions,
such as resource allocation. The use of single feature of
software to predict faults is not helpful. Fenton uses an
example where the same program functionality is
achieved using dissimilar programming language
constructs resulting in dissimilar static measurements
for that module [3]. Fenton uses this example to argue
the uselessness of static code attributes. However, where
single feature fail and combination succeed [4], Hence
combination of static features extracted from
requirements and code can be good predictors for
identifying modules that actually contains fault.

When we use machine learning methods to make
such predication systems, poor data quality in either
training set or test set or both sets, can affect prediction
accuracy. Various machine learning algorithms has been
used in systems engineering to predict faults, software
project development effort, software quality and
software defects. Evaluation of the use of machine
learning in software engineering report that machine
learning in software engineering is a mature methods
based on mostly available tools using well understood
algorithms. The decision tree (DT) classifier is an
example of a machine learning algorithm that can be
used for predicting continuous attributes (regression) or
categorical attributes (classification). Thus, software
prediction can be cast as a supervised learning problem,
i.e., the process of learning to separate samples from
dissimilar classes by finding features between samples
of known classes. Software quality models ensure the
reliability of the delivered products. It has become vital
to develop and implement good software quality models
early in the software development life cycle, especially
for large scale development efforts.

Software quality prediction models seek to predict
quality aspect such as whether a component is fault

47

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

prone or not. Methods for identifying fault prone
software modules support helps to improve resource
planning and scheduling as facilitating cost avoidance
by efficient verification. Such models can be used to
predict the response variable which can either be the
class of a module (e.g. fault-prone or not fault-prone) or
a quality factor (e.g. number of faults) for a module. The
basic hypothesis of software quality prediction is that
software currently under development is fault prone if a
module with the similar product or process metrics in
previous project developed in the same environment was
fault free. Therefore, the figures available early within
the existing project or from the earlier project can be
used in making predictions. This technique is very
useful for the large-scale projects or projects with
multiple revisions.

Il. LITERATURE REVIEW

Statistical methods, machine learning method, and
mixed techniques are widely used in literature to predict
software faults.

Table-1

Fujimaki (2005)
Bellini et al (2005)

Koru and Tian (2005)
Yan Ma et al. (2007)
Norman Fenton, et al

Seliya N. et al (2005)

(2007)
Ceylan E. et al. Chaudhary Pree, et al
(2006) (2012)
. Kaur Arashdeep, et al
Seliya N et al (2007) (2011)

Jiang et al.(2007) Challagulla et al.(2005)

1. SOFTWARE FAULT, FAULT, FAILURE

Faults contain in software systems and it continue
to work, is a major problem in future. A software bug is
an error, flaw, mistake, failure, or fault in a computer
program that prevents it from behaving as intended (e.g.,
producing an incorrect result). A software fault is a
deficiency that causes software failure in an executable
product. In software engineering, the non-conformance
of software to its requirements is commonly called a
bug. Most bugs arise from mistakes and errors made by
people in either a program's source code or in its design,
and a few are caused by compilers producing incorrect
object code. Meaningful the causes of possible defects
as well as identifying general software process areas that
may need attention from the initialization of a project
could save capital, time and effort. The possibility of
early estimating the potential faultiness of software
could help on planning, controlling and executing
software development activities. Software is said to be

faulty if we feed some input and it produce incorrect
output. For each execution of the software program
where the output is incorrect, a failure is observed.
Software engineers distinguish software faults from
software failures. In case of a failure, the software does
not do what the user expects but on the other hand fault
is a hidden programming error that may or may not
actually evident as a failure. A fault can also be
described as an error in the correctness of the semantic
of a computer program. A fault will become a failure if
the exact computation conditions are met, one of them
being that the faulty portion of computer software
executes on the CPU. A fault can also turn into a failure
when the software is ported to a different hardware
platform or a different compiler, or when the software
gets extended. Software faults are all due to human
errors in creating the software. The following depicts the
types of failure with its description.

Table-2
Failure class Description
Transient Occurs only with certain inputs
Permanent Occurs with all inputs

System can recover without
operator intervention
Operator intervention is required

to recover from failure

Recoverable

Unrecoverable

Non- Failure does not corrupt system
corrupting state or data
Corrupting Failure corrupts system state or

data

IV. RATIONALE OF THE STUDY

The increasing demand for higher preparation
competency and security in engineering processes has
resulted in huge interest in fault-detection techniques.
Engineering researchers and practitioners remain
concerned with accurate prediction on qualitative and
quantitative factors. So it is in this environment
Software quality prediction models seek to predict
quality factors such as whether a component is fault
prone or not, despite earlier attempts to estimate the
fault prediction, the less stress has been paid on the
reducing of the software defect and predicting it before
occurred. Thus the study is a significant attempt that
will be helpful for the prediction of faults.

V. OBJECTIVE OF THE STUDY
Find best machine learning algorithm for Software

Fault Prediction Based on Quantitative and Qualitative
Factors. The Comparison criteria for the different

48

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

algorithms are based on the Mean absolute error (MAE),
Root mean square error (RMSE) Values and accuracy.

VI. RESEARCH METHODOLOGY

The methodology consists of the following steps:

A. To find the Qualitative and Quantitative attributes
of software systems.

The first step is to find the Qualitative and
Quantitative factors of software systems i.e. software
metrics. The real-time defect data sets are taken from
data repository, available online at:
http://promisedata.googlecode.com/svn/trunk/defect/.

B. To Select the suitable
representation of statement.

metric values as

The suitable metrics like product requirement
metrics and product module metrics out of these data
sets are considered. The term product is used referring
to module level data. The term metrics data applies to
any finite numeric values, which describe measured
qualities and characteristics of a product. The term
product refers to anything to which defect data and
metrics data can be associated.

C. Analyze, refine metrics and normalize the metric
values and Explore performance of Machine
Learning Algorithms.

In this step the metric values are analyzed, refined
and normalized for the better learning. Thereafter,
Machine learning algorithm has best result are selected
for experimented with that dataset.

VIl. COMPARISON OF ALGORITHMS

The comparisons are made on the basis of the more
accuracy and least value of MAE and RMSE error
values. Accuracy value of the prediction model is the
major criteria used for comparison. The mean absolute
error is chosen as the standard error. The technique
having lower value of mean absolute error is chosen as
the best fault prediction technique.

A. Mean absolute error

Mean absolute error, MAE is the average of the
difference between predicted and actual value in all test
cases; it is the average prediction error. The formula for
calculating MAE is given in equation

Figure-1

|(]‘:_Cll_|ﬂ: _C":I +---+||ﬂ'.._£’n
mn
Assuming that the actual output is a, expected output is
C.

B. Root mean-squared error

RMSE is frequently used measure of differences
between values predicted by a model or estimator and
the values actually observed from the thing being
modeled or estimated. It is just the square root of the
mean square error as shown in equation

Figure-2

|II(ﬂ'1_L"1]:+ [ﬂl_ﬁ‘l]:+"'_(ﬂ?r_f?r.]:
n

The mean-squared error is one of the most
commonly used measures of success for numeric
prediction. This value is computed by taking the average
of the squared differences between each computed value
and its corresponding correct value. The root mean-
squared error is simply the square root of the mean-
squared-error. The root mean-squared error gives the
error value the same dimensionality as the actual and
predicted values.

VIII. RESULTS

The first step is to find the structural code and
prerequisite attributes of software systems i.e. software
metrics. The real-time defect data sets are taken from
http://promisedata.org/repository.

A. Qualitative factors

The Quantitative factors are grouped under five
topics:

1) Specification and Documentation process
2)
3)
4)
5)

New Functionality
Design and Development process
Testing and Rework

Project Management

B. Quantitative Factors
The following are the Quantitative factors are:

i) Software size: the size, in KLoC of the developed
code and the development language.

Effort: development effort measured in person
hours for the software development, from
specification review to unit test.

The best learning algorithm is implemented in
WEKA environment is one such facility which lends a
high performance language for technical computing.

The following parameters are used for building the
model and the values used in the experiment:

49

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

a) CrossVal -- Sets the number of folds for cross
validation (1 = leave one out).

b) Debug -- If set to true, classifier may output
additional info to the console.

c) Display Rules -- Sets whether rules are to be
printed.

d) Evaluation Measure -- The measure used to
evaluate the performance of attribute combinations
used in the decision table.

e) search -- The search method used to find good
attribute combinations for the decision table.

f) uselBk -- Sets whether IBk should be used instead
of the majority class.

IX. CONCLUSION

Software Fault prediction is an important topic in
software engineering. Software Fault prediction models
have the potential to improve the quality of software
systems and reduce the expenditure related with
delivering those systems. The study evaluated the
performance of various machine learning techniques for
the fault dataset. Techniques have shown better results
than other algorithms with lower values of MAE, RMSE
and accuracy is implemented using WEKA.

Despite a set of fault prediction studies, there is
need to explore and have more research studies with
reliable methodology and practical applicability in other
dimension like programming languages and for mapping
the relation of features and fault tolerance so that
software defects could be forecasted and mitigated at the
very genesis

X. REFERENCES
[1] Seliya N., Khoshgoftaar T.M. and Zhong S.
(2005), “Analyzing software quality with limited
fault-proneness defect data”, in proceedings of
the Ninth IEEE international Symposium on High
Assurance System Engineering, Germany, pp.
89-98.

Jiang Y., Cukic B. and Menzies T. (2007), “Fault
Prediction Using Early Lifecycle Data”. ISSRE
2007, the 18th IEEE Symposium on Software
Reliability Engineering, IEEE Computer Society,
Sweden, pp. 237-246.

[2]

(3]

[4]

(5]

[6]

[7]

(8]

[9]

[10]

[11]

SO®

Bezdek J.C., Ehrlich R., and Full W. (1984)
“FCM: Fuzzy c-means algorithm”. Computers
and Geoscience, Volume: 10, pp. 191-203.

A Systematic Literature Review on
FaultPrediction Performance in Software
Engineering Tracy Hall, Sarah Beecham, David
Bowes, David Gray and Steve Counsell.

Challagula, Bastani B. and Yen (2006). “A
Unified framework for Defect Data Analysis
using the MBR Technique”. Proceedings of the
18th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI'06),
Washington, pp. 39-46.

Ma Y. and Guo L. (2006), “A Statistical
Framework for the Prediction of Fault-
Proneness”, Product Focused Process

Improvement, Edition: First, Publisher: Springer
Berlin/Heidelberg, pp. 204-214.

Bellini P. (2005), “Comparing Fault-Proneness
Estimation Models”, 10th IEEE International
Conference on Engineering of Complex
Computer Systems (ICECCS'05), China, pp. 205-
214.

Challagulla V.U.B., Bastani F.B., Yen I. L. and
Paul (2005) “Empirical assessment of machine
learning based software defect prediction
techniques”, 10th IEEE International Workshop
on Object-Oriented Real-Time Dependable
Systems, USA, pp. 263-270.

Seliya N., Khoshgoftaar T.M. and Zhong S.
(2005), op cit.

Norman Fenton, Martin Neil, William Marsh,
Peter Hearty, Lukasz Radlinski, Paul Krause,
“Project Data Incorporating Qualitative Factors
for Improved Software Defect”, Proceedings of
the PROMISE workshop, Year: 2007.

Chaudhary Preeti, Mohan Neeraj, Sandhu
Parvinder S. “An Empirical Assessment for
Software Defect Forecast on Qualitative and
Quantitative Factors using Simple Decision Table
Majority Classifier”, International Journal of
Research in Engineering and Technology
(JRET) Vol. 1, No. 3, 2012 ISSN 2277 — 4378
189.

50

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

