Hash-Based String Matching Algorithm

For Network Intrusion Prevention systems (NIPS)

VINOD. O & B. M. SAGAR
ISE Department, R.V.College of Engineering, Bangalore-560059, INDIA
Email Id :vinod.goutham@gmail.com,sagar.om@gmail.com

Abstract - Network Intrusion Prevention Systems (NIPS)
are employed in-line with the network segment that needs
to be protected. As the packets within the network passes
through the NIPS device, the packets are inspected for the
presence of any attacks. Like viruses, most intruder
activities have some kind of signatures, hence a NIPS
device contains a pattern matching algorithm to match the
virus signatures within the rule list with the incoming
network packets. When an attack is identified, the NIPS
blocks the infected data packet with a unusual signature
pattern. The pattern-matching algorithm must be able to
operate at network speeds, while simultaneously detecting
the main bulk of intrusions. This paper proposes an
alternative algorithm using a Hash Function which uses a
SRAM that creates fingerprints of the packet payload
which are then compared with the patterns signatures. The
proposed hash based system consumes around 0.56 times
or 56 percent less memory than the memory consumed by
the RTCAM method. It can also be observed from the
results that as the TCAM width doubles the initial width
the memory consumption increases around 1000kb the
initial memory consumption value in RTCAM method. But
in the case of hash based method as the block size is
doubled the memory consumption increases by a small
value around 200kb only from the initial memory
consumption value. Hence the proposed hash based
method is efficient than the RTCAM method in terms of
memory consumption. Furthermore, the system is fully
compatible with Snort’s rules syntax, which is the basic
standard followed for intrusion prevention systems.

Index Terms - Hash Algorithm, NIPS, Padding, RTCAM,
Snort Rules, SRAM, TCAM

I. INTRODUCTION

IPS products are basically Intrusion Detection
Systems (IDS) that operate in-line and are thus
dependent on pattern-matching to recognize malicious
content within individual packets (or a group of
packets). These systems deploy proactive defense
mechanisms designed to detect malicious packets within
normal network traffic. Once identified, the malicious
traffic is usually blocked. NIPS systems are usually

comprised of two major components: a pattern
matching engine and a packet classification engine. The
pattern matching engine’s input is a packet and its
output is a set of matched patterns belonging to the set
of well known attack’s signatures. There are a number
of challenges in implementing a NIPS device; These all
stem from the fact that a NIPS device is designed to
work in-line, thus presenting both a bottleneck and a
single point of failure. If a NIPS device struggles to
keep up with traffic speeds, it becomes a bottleneck,
thus increasing latency and reducing throughput. If the
device fails it can impact the availability of entire
network. The current trend for integrating security with
network switches and routers both at the network edge
and at the enterprise gateway, implies that the NIPS
device must meet the network performance and
reliability requirements [1].

Content addressable memories (CAMs) minimize the
number of memory accesses required to locate the entry.
Given an input key, the CAM device compares it against
all memory words in parallel; hence, a lookup procedure
requires one clock cycle. Unlike standard computer
memory (RAM) in which the user supplies a memory
address and the RAM returns the data word stored at
that address, a CAM is designed such that the user
supplies a data word and the CAM searches its entire
memory to see if that data word is stored anywhere in it.
If the data word is found, the CAM returns a list of one
or more storage addresses where the word was found
(and in some architectures, it also returns the data word,
or other associated pieces of data).*

TCAM is a type of memory in which each memory
cell can store three data states: 0, 1, and X (“Don’t
Care”). It is suitable for applications such as networking
equipment because it achieves deterministic, high-speed
searches by using simultaneous parallel operation to

! Content addressable memory available at

Http://en.wikipedia.org/wiki/Content-addressable_memory

55

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

compare data strings input from an external device with
data strings stored in the memory and outputting the
matches. This high degree feature comes at the cost of
access time, storage density, and power consumption.
Since the input key is compared against each memory
word, each of the storage bit requires match logic to
match a word line which signals a match for the given
key. This extra logic and capacitive loading lengthens
the access time and increases power consumption [2].

Snort is an open source NIPS that is commonly used
in industry. Snort contains a database of rules with
several thousands of attack signatures. Each of Snort’s
rules contains a header and several content fields. The
header part consists of a packet identifier (protocol,
source / destination IPs and ports), whereas the content
part contains one or more patterns that may have some
correlation between them. A rule is matched only if all
of its patterns are matched with the expected correlation
among them. NIPS devices which are compliant with
this standard have a great advantage - the same database
can be transparently imported from one engine to
another.?

Il. RELATED WORK

High Performance String Matching Algorithm For
NIPS [1] which proposes an algorithm that places the
set of the attack signatures in the TCAM. It is capable of
matching multiple patterns and attains line rate speed
and greater accuracy of detection is comparatively easy
to analyse and implement. The RTCAM algorithm in
this paper forms the base to the Hash algorithm
proposed.

Longest Prefix Matching Using Bloom Filters [2].
The algorithm performs parallel queries on Bloom
filters, which are an efficient data structure for
membership queries, and obtains addresses of prefix
membership in sets of prefixes sorted by prefix length.
The use of this algorithm for Internet Protocol (IP)
routing lookups results in a search engine providing
better performance and scalability than TCAM-based
approaches. The key feature of this technique is that the
performance can be held constant for longer address
lengths or additional unique address prefix lengths in the
forwarding table given that memory resources scale
linearly with the number of prefixes in the forwarding
table. The approach is equally attractive for Internet
Protocol Version 6 (IPv6) which uses 128-bit
destination addresses, four times longer than 1Pv4.

2 Snort available at : Yaron weinsberg, Shimirit turz-David, Tal
Anker, "High Performance String Matching Algorithm For NIPS",
2005.

Fast Hash Table Lookup Using Extended Bloom
Filter: An Aid to Network Processing [3] Hash table is
used as one of the fundamental modules in several
network processing algorithms and applications such as
route lookup, packet classification, per-flow state
management and network management. A poorly
designed hash table can critically affect the worst case
throughput due to multiple memory accesses required
for each lookup. Because of which, high throughput
requirement in turn underscores the need for a hash table
having good and more predictable worst case lookup
performance. This paper presents a novel hash table data
structure and lookup algorithm which improves the
performance of a naive hash table by providing better
bounds on the hash collisions and memory accesses per
search. The algorithm proposed here extends the
multiple-hashing Bloom Filter data structure to support
exact matches.

A High Speed Pattern Matching For Network
IDS/IPS [4] proposes novel multiple string matching
algorithm that can process multiple characters at a time
thus achieving multi-gigabit rate search speeds. It also
proposes an architecture for an efficient implementation
on TCAM based hardware. Additionally it proposes
novel optimizations by making use of the properties of
TCAMs to significantly reduce the memory
requirements of the proposed algorithm. Finally it
presents extensive simulation results of network-based
virus/worm detection using real signature databases to
illustrate the effectiveness of the proposed scheme.

An Efficient TCAM Based Implementation Of Multi
Pattern Matching Using Covered State Encoding [5]
uses a state encoding scheme called a covered state
encoding for the efficient TCAM-based implementation
of the Aho-Corasick multi pattern matching algorithm,
which is used in network intrusion detection systems. It
also proposes constructing the modified Aho-Corasick
NFA for multi character processing, which can be
implemented on a TCAM using the covered state
encoding. The covered state encoding takes advantage
of “don’t care” feature of TCAMs and information of
failure transitions is implicitly captured in the covered
state encoding.

I1l. PROPOSED SOLUTION
A. Hash-Based Pattern Matching Algorithm

Since TCAMs consume 150 times more power per
bit than SRAM and currently cost about 30 times more
per bit of storage. A lookup technique that employs
standard SRAM requires less than four memory
accesses per lookup and utilizes less than 11 bytes per
entry for IPv4 and less than 44 bytes per entry for IPv6.
It not only matches TCAM performance and resource

56

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

utilization, but also provides a significant advantage in
terms of cost and power consumption. Because of this
reason TCAM can be replaced by an SRAM and for
which a Hash based technique is proposed for pattern
matching [2].

Due to the high price of TCAM memory and the
increasing number of signatures, a TCAM oriented
solution may not be acceptable to the industry. In order
to elevate the problem, this paper proposes an
alternative algorithm using a Hash Function which uses
a SRAM that creates fingerprints of the packet payload
which are then compared with the patterns signatures
(previous works that are using hashing technique can be
found in [3] [4] [6] [7] [8D).

The algorithm follows the same logic as the
RTCAM algorithm [1]. A string of width 'w' bytes is
fetched, the string’s rightmost block 'b' bytes are
inserted as a key to the shift table and the shift is
retrieved. If the shift value N is not equal to 0, the text
position is shifted right by N. If it is 0, then possible
pattern match is found and it needs to look at the
patterns pointers. It follows the hash entry’s list, which
points to the patterns that have the same key as the
matched string.

In the RTCAM algorithm, a shift table is used.
Instead of creating a shift table that maps a single
character to a shift value, create shift values for a block
which contains B characters. Using blocks reduce the
amount of false matches. When a packet is processed, a
block of characters is extracted from the search window
(right to left) which are used as an index to the shift
table. The shift value is retrieved from the shift table. If
it is zero, then an exact match must be performed,
otherwise we can shift the text. In order to minimize the
search space, the patterns are linked using a hash value.
Then calculate a hash value using the sliding window’s
text and locate the patterns bucket in the hash-table.

The Proposed hash based pattern matching system
works as shown in the fig.1.

Rules User interface
IE database|

Hash Based Pattern
Matching

Filtered
Packets

Memory Consumed

Packet ‘Packet capture tool

Stafistics
DPerformance gragh

Fig 1 : Proposed Hash based Pattern Matching system.

Algorithm : Hash-Based Pattern Matching
1: T(Packet)= {Ti, 1 < i <n}

i pos<1,;

: shift <0

: width, w & default

: Block, b & default

: while pos < n — width do

: shift & SHIFT TABLE[block]
: if shift is O then

[EEY
o

: key = hash(T pos,._postwiam-17) {CONSstruct a fingerprint}
: Step (2)

: entry= SRAM.lookup(key)

: Step (3)

: shift<= entry.shift

. if shift # 0 then

e e T o
o O~ W N P

. pos<=pos+shift

-
~

: continue
cend if
. Step (6)

N
o © o

: for all current=entry key.next # null do

21: if current.len < width {exact match} OR

checkSubPatterns(current.len ,pos, current. SRAM Ptrs)
= =True then

24: MatchedList.add(current.ld, pos+current.Len)

25: end if

30: end for

31: end while

checkSubPatterns(len, pos, SRAM Ptrs)

1: while pos < len—width do

2 2 block & Tpostwidth-B,...pos+width-1]
3: key & hash(T pos,...postwidth—17)
4: entry = SRAM.lookup(key)
5: if entry.shift # 0 or entry.id & SRAM Ptrs then
6: return false
7:end if

57

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

8: return true
9: end while

B. Data Structures that are used by Hash-based
Pattern matching Algorithm.

In order to implement the hash-based solution
several data-structures are maintained. Sub-Patterns
Hash Table (HT) replaces the TCAM in the TCAM
based algorithm. The table resides in SRAM and
contains the r patterns divided by w which is the search
window’s width. Entries with less than w bytes are
prepended (padding at the prefix) with the suffix of the
previous part. A key is calculated on the sub-pattern and
the sub-pattern is placed in the table accordingly.

1. Shift Table - A shift table for a block of characters B
as in the algorithm presented by Manber in [7] [8] [9].
The block of characters is used during preprocessing
the patterns to construct the shifting table. Within the
sliding widow, it looks at the text, B characters at a
time. For simplicity2 assume that the table size is SB,
where S is the alphabet. Each entry corresponds to a
distinct substring of length B. Let X = {x1,x2, ..,xB} be
a string corresponding to the i entry of the shift table.
There are two cases: either X appear somewhere in one
of the patterns or not. If X does not appear in any of the
patterns, it stores m—B=+1 in the corresponding shift
entry, otherwise, it finds the rightmost occurrence of X
in any of the patterns that contain it; suppose it is in P;
and that X ends at position g of P;. Then it stores m—q in
the table. If the shift value is greater than zero, it can
safely shift. Otherwise, it is possible that the current
substring we are looking at in the text matches some
pattern in the pattern list. To avoid comparing the
substring to every pattern in the pattern list, it uses the
previous defined hash table (that minimizes the number
of patterns to be compared).

2. Patterns Table - an array of patterns ordered by a
patterniD.

3. Matched Patterns List - each entry contains the
matched patterns and its corresponding end position in
the text.

IV. EXPERIMENTAL RESULTS

The proposed Hash Based pattern matching NIPS
system and the NIPS system using earlier RTCAM
Algorithm was developed on Java platform. The
performance comparison was done for the same rule set
on different TCAM width for RTCAM and on different
block size for Hash algorithm. The signature pattern was
obtained from the Snort rule list payload-content in the
snort database. Basically these snort signatures are
shorter (average is only 12 bytes). For the same
signature set the TCAM width and Block size is varied

in order to observe the variations in the memory
consumptions which is as shown.

It can be noted that the memory consumed by
RTCAM Based algorithm is comparatively more than
the memory consumed by the Hash based method for
the same signature set size. If the TCAM width
increases memory consumption also increases
considerably to a larger value. This is a major drawback
in the RTCAM method as the TCAM width must be
carefully chosen as it plays an important role during
hardware implementation.

The proposed hash based system in this paper
consumes around 0.36 times less memory than the
memory used by the RTCAM method for a initial
smaller TCAM width and block size. But as the TCAM
width and the block size increases the memory
consumed by hash method is 0.56 times less than the
memory consumed by the RTCAM method. Hence the
proposed hash based method is comparatively efficient
than the RTCAM method.

1. When the TCAM width is 4 the memory consumed is
1448kb and when the Block Size is 4 the memory
consumed is 900kb, as illustrated in fig 2.

memory Space taken

1,500
1,250
1,000

750 -

500 —

Memory in KB

250 =

0=
0 5 10 15 20 25 30 35 40

Mo of Rules

W-RTCAM 4 HASH

Fig 2 : A graph showing the memory consumed when
TCAM width = 4 and Block size = 4.

2. When the TCAM width is 6 the memory consumed is
1782kb and when the Block Size is 6 the memory
consumed is 980kb, as illustrated in fig 3.

45 50 55 60

58

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

memory Space taken

1,750 n
1,500
[as]
= 1,250
-
E' 1.,|:||:||:| /.
g 70 e oot
i --_-______
2 500 (__,_,-"’J
50 e S

0 5 10 15 20 25 30 35 40

Mo of Rules

- RTCAM #HASH

Fig 3: A graph showing the memory consumed when
TCAM width = 6 and Block size = 6

3. When the TCAM width is 8 the memory consumed is
2512kb and when the Block Size is 8 the memory
consumed is 1107kb, as illustrated in fig 4.

45 50 55 80

memory Space taken

2,500 |

2,000

1,500

1,000 T

Memory in KB

500 = o

0 5 10 15 20 25 30 35 40 45 50 =5 60

No of Rules

W-RTCAM -#HASH

Fig 4: A graph showing the memory consumed when TCAM width
=8 and Block size = 8.

V. CONCLUSION & FUTURE WORK

The paper proposes a NIPS system that is based on
a Hash based pattern matching algorithm that uses a
static RAM (SRAM) instead of TCAM. This paper
presents many advantages over RTCAM NIPS device.
First, The proposed hash based system consumes around
0.56 times less memory than the memory consumed by
the RTCAM method. Second, this software NIPS device
can be implemented easily with less complexity. Third
since the TCAM is replaced with the standard SRAM
the cost of hardware implementation can be reduced and
is economically suitable approach for industrial solution.

Even though the memory consumption rate can be
reduced relatively the above solution cannot be directly

used in industrial solutions. The reason is because the
pattern's length varies quite often depending on source
from which the pattern is obtained and also the nature of
infection. For eg. the length of the ClamAV signatures
are quite long (average of 124 bytes). There is a major
difficulty in designing a unified algorithm that deals
with long patterns and short ones since the performance
is typically influenced by the overhead caused by the
short patterns. A Padding technique can be developed to
solve the above identified problem.

VI. REFERENCES
[1] Yaron weinsberg, Shimirit turz-David, Tal
Anker, "High Performance String Matching
Algorithm For NIPS", 2005, unpublished.
[2] Sarang Dharmapurikar, Praveen Krishnamurthy,
and David E. Taylor " Longest Prefix Matching
Using Bloom Filters”, vol.14(2), pp.397-409,
April 2006.
[3] Haoyu Song, Sarang Dharmapurikar, Jonathan
Turner, John Lockwood " Fast Hash Table
Lookup Using Extended Bloom Filter:An Aid to
Network Processing", August 26, 2005.
[4] Mansoor Alicheery, Vijay Kumar,
Muthuprassana,” A High Speed Pattern Matching
For Network IDS/IPS", vol.1, pp.187-196,2006.
[5] Sang Yun, " An Efficient TCAM Based
Implementation Of Multi Pattern Matching Using
Covered State Encoding”, vol.62(2), pp.213-221,
February 2012.
[6] R. M. Karp and M. O. Rabin, "Efficient
Randomized Pattern Matching Algorithms”,
Technical report TR-31-81, Harvard University,
Cambridge, MA, USA, December 1981.
[71 S.Wu and U. Manber, "Fast Text Searching with
Errors”, Technical Report TR-91-11, University
of Arizona, Department of Computer Science,
June 1991.
S. Wu and U. Manber. Agrep , "A Fast
Approximate Pattern-Matching ~ Tool", In
Proceedings USENIX Winter 1992 Technical
Conference, pages 153-162, San Francisco, CA,
January 1992.
S. Wu and U. Manber, "A fast Algorithm for
Multi- Pattern Searching ", Technical Report TR-

8]

(9]

94-17, Department of Computer Science,
University of Arizona, May 1993.
QO®

59

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

