

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

55

Hash-Based String Matching Algorithm

For Network Intrusion Prevention systems (NIPS)

VINOD. O & B. M. SAGAR

ISE Department, R.V.College of Engineering, Bangalore-560059, INDIA

Email Id :vinod.goutham@gmail.com,sagar.bm@gmail.com

Abstract - Network Intrusion Prevention Systems (NIPS)

are employed in-line with the network segment that needs

to be protected. As the packets within the network passes

through the NIPS device, the packets are inspected for the

presence of any attacks. Like viruses, most intruder

activities have some kind of signatures, hence a NIPS

device contains a pattern matching algorithm to match the

virus signatures within the rule list with the incoming

network packets. When an attack is identified, the NIPS

blocks the infected data packet with a unusual signature

pattern. The pattern-matching algorithm must be able to

operate at network speeds, while simultaneously detecting

the main bulk of intrusions. This paper proposes an

alternative algorithm using a Hash Function which uses a

SRAM that creates fingerprints of the packet payload

which are then compared with the patterns signatures. The

proposed hash based system consumes around 0.56 times

or 56 percent less memory than the memory consumed by

the RTCAM method. It can also be observed from the

results that as the TCAM width doubles the initial width

the memory consumption increases around 1000kb the

initial memory consumption value in RTCAM method. But

in the case of hash based method as the block size is

doubled the memory consumption increases by a small

value around 200kb only from the initial memory

consumption value. Hence the proposed hash based

method is efficient than the RTCAM method in terms of

memory consumption. Furthermore, the system is fully

compatible with Snort’s rules syntax, which is the basic

standard followed for intrusion prevention systems.

Index Terms - Hash Algorithm, NIPS, Padding, RTCAM,

Snort Rules, SRAM, TCAM

I. INTRODUCTION

 IPS products are basically Intrusion Detection

Systems (IDS) that operate in-line and are thus

dependent on pattern-matching to recognize malicious

content within individual packets (or a group of

packets). These systems deploy proactive defense

mechanisms designed to detect malicious packets within

normal network traffic. Once identified, the malicious

traffic is usually blocked. NIPS systems are usually

comprised of two major components: a pattern

matching engine and a packet classification engine. The

pattern matching engine’s input is a packet and its

output is a set of matched patterns belonging to the set

of well known attack’s signatures. There are a number

of challenges in implementing a NIPS device; These all

stem from the fact that a NIPS device is designed to

work in-line, thus presenting both a bottleneck and a

single point of failure. If a NIPS device struggles to

keep up with traffic speeds, it becomes a bottleneck,

thus increasing latency and reducing throughput. If the

device fails it can impact the availability of entire

network. The current trend for integrating security with

network switches and routers both at the network edge

and at the enterprise gateway, implies that the NIPS

device must meet the network performance and

reliability requirements [1].

 Content addressable memories (CAMs) minimize the

number of memory accesses required to locate the entry.

Given an input key, the CAM device compares it against

all memory words in parallel; hence, a lookup procedure

requires one clock cycle. Unlike standard computer

memory (RAM) in which the user supplies a memory

address and the RAM returns the data word stored at

that address, a CAM is designed such that the user

supplies a data word and the CAM searches its entire

memory to see if that data word is stored anywhere in it.

If the data word is found, the CAM returns a list of one

or more storage addresses where the word was found

(and in some architectures, it also returns the data word,

or other associated pieces of data).
1

 TCAM is a type of memory in which each memory

cell can store three data states: 0, 1, and X (“Don’t

Care”). It is suitable for applications such as networking

equipment because it achieves deterministic, high-speed

searches by using simultaneous parallel operation to

1 Content addressable memory available at :

Http://en.wikipedia.org/wiki/Content-addressable_memory

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

56

compare data strings input from an external device with

data strings stored in the memory and outputting the

matches. This high degree feature comes at the cost of

access time, storage density, and power consumption.

Since the input key is compared against each memory

word, each of the storage bit requires match logic to

match a word line which signals a match for the given

key. This extra logic and capacitive loading lengthens

the access time and increases power consumption [2].

 Snort is an open source NIPS that is commonly used

in industry. Snort contains a database of rules with

several thousands of attack signatures. Each of Snort’s

rules contains a header and several content fields. The

header part consists of a packet identifier (protocol,

source / destination IPs and ports), whereas the content

part contains one or more patterns that may have some

correlation between them. A rule is matched only if all

of its patterns are matched with the expected correlation

among them. NIPS devices which are compliant with

this standard have a great advantage - the same database

can be transparently imported from one engine to

another.
2

II. RELATED WORK

 High Performance String Matching Algorithm For

NIPS [1] which proposes an algorithm that places the

set of the attack signatures in the TCAM. It is capable of

matching multiple patterns and attains line rate speed

and greater accuracy of detection is comparatively easy

to analyse and implement. The RTCAM algorithm in

this paper forms the base to the Hash algorithm

proposed.

 Longest Prefix Matching Using Bloom Filters [2].

The algorithm performs parallel queries on Bloom

filters, which are an efficient data structure for

membership queries, and obtains addresses of prefix

membership in sets of prefixes sorted by prefix length.

The use of this algorithm for Internet Protocol (IP)

routing lookups results in a search engine providing

better performance and scalability than TCAM-based

approaches. The key feature of this technique is that the

performance can be held constant for longer address

lengths or additional unique address prefix lengths in the

forwarding table given that memory resources scale

linearly with the number of prefixes in the forwarding

table. The approach is equally attractive for Internet

Protocol Version 6 (IPv6) which uses 128-bit

destination addresses, four times longer than IPv4.

2 Snort available at : Yaron weinsberg, Shimirit turz-David, Tal

Anker, "High Performance String Matching Algorithm For NIPS",

2005.

 Fast Hash Table Lookup Using Extended Bloom

Filter: An Aid to Network Processing [3] Hash table is

used as one of the fundamental modules in several

network processing algorithms and applications such as

route lookup, packet classification, per-flow state

management and network management. A poorly

designed hash table can critically affect the worst case

throughput due to multiple memory accesses required

for each lookup. Because of which, high throughput

requirement in turn underscores the need for a hash table

having good and more predictable worst case lookup

performance. This paper presents a novel hash table data

structure and lookup algorithm which improves the

performance of a naive hash table by providing better

bounds on the hash collisions and memory accesses per

search. The algorithm proposed here extends the

multiple-hashing Bloom Filter data structure to support

exact matches.

 A High Speed Pattern Matching For Network

IDS/IPS [4] proposes novel multiple string matching

algorithm that can process multiple characters at a time

thus achieving multi-gigabit rate search speeds. It also

proposes an architecture for an efficient implementation

on TCAM based hardware. Additionally it proposes

novel optimizations by making use of the properties of

TCAMs to significantly reduce the memory

requirements of the proposed algorithm. Finally it

presents extensive simulation results of network-based

virus/worm detection using real signature databases to

illustrate the effectiveness of the proposed scheme.

 An Efficient TCAM Based Implementation Of Multi

Pattern Matching Using Covered State Encoding [5]

uses a state encoding scheme called a covered state

encoding for the efficient TCAM-based implementation

of the Aho-Corasick multi pattern matching algorithm,

which is used in network intrusion detection systems. It

also proposes constructing the modified Aho-Corasick

NFA for multi character processing, which can be

implemented on a TCAM using the covered state

encoding. The covered state encoding takes advantage

of “don’t care” feature of TCAMs and information of

failure transitions is implicitly captured in the covered

state encoding.

III. PROPOSED SOLUTION

A. Hash-Based Pattern Matching Algorithm

 Since TCAMs consume 150 times more power per

bit than SRAM and currently cost about 30 times more

per bit of storage. A lookup technique that employs

standard SRAM requires less than four memory

accesses per lookup and utilizes less than 11 bytes per

entry for IPv4 and less than 44 bytes per entry for IPv6.

It not only matches TCAM performance and resource

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

57

utilization, but also provides a significant advantage in

terms of cost and power consumption. Because of this

reason TCAM can be replaced by an SRAM and for

which a Hash based technique is proposed for pattern

matching [2].

 Due to the high price of TCAM memory and the

increasing number of signatures, a TCAM oriented

solution may not be acceptable to the industry. In order

to elevate the problem, this paper proposes an

alternative algorithm using a Hash Function which uses

a SRAM that creates fingerprints of the packet payload

which are then compared with the patterns signatures

(previous works that are using hashing technique can be

found in [3] [4] [6] [7] [8]).

 The algorithm follows the same logic as the

RTCAM algorithm [1]. A string of width 'w' bytes is

fetched, the string’s rightmost block 'b' bytes are

inserted as a key to the shift table and the shift is

retrieved. If the shift value N is not equal to 0, the text

position is shifted right by N. If it is 0, then possible

pattern match is found and it needs to look at the

patterns pointers. It follows the hash entry’s list, which

points to the patterns that have the same key as the

matched string.

 In the RTCAM algorithm, a shift table is used.

Instead of creating a shift table that maps a single

character to a shift value, create shift values for a block

which contains B characters. Using blocks reduce the

amount of false matches. When a packet is processed, a

block of characters is extracted from the search window

(right to left) which are used as an index to the shift

table. The shift value is retrieved from the shift table. If

it is zero, then an exact match must be performed,

otherwise we can shift the text. In order to minimize the

search space, the patterns are linked using a hash value.

Then calculate a hash value using the sliding window’s

text and locate the patterns bucket in the hash-table.

 The Proposed hash based pattern matching system

works as shown in the fig.1.

Fig 1 : Proposed Hash based Pattern Matching system.

Algorithm : Hash-Based Pattern Matching

1: T(Packet) = {Ti, 1 ≤ i ≤ n}

2: pos⇐ 1;

3: shift ⇐ 0

4: width, w⇐ default

5: Block, b⇐ default

6: while pos ≤ n − width do

7: block⇐ T[pos+width−B,..,pos+width−1]

8: shift ⇐ SHIFT TABLE[block]

9: if shift is 0 then

10: key⇐ hash(T[pos,..,pos+width−1]) {construct a fingerprint}

11: Step (2)

12: entry= SRAM.lookup(key)

13: Step (3)

14: shift entry.shift

15: if shift ≠ 0 then

16: pospos+shift

17: continue

18: end if

19: Step (6)

20: for all current=entry.key.next ≠ null do

21: if current.len ≤ width {exact match} OR

checkSubPatterns(current.len ,pos, current.SRAM Ptrs)

 = = True then

24: MatchedList.add(current.Id, pos+current.Len)

25: end if

30: end for

31: end while

checkSubPatterns(len, pos, SRAM Ptrs)

1: while pos ≤ len−width do

2 : block⇐ T[pos+width−B,..,pos+width−1]

3: key⇐ hash(T[pos,..,pos+width−1])

4: entry = SRAM.lookup(key)

5: if entry.shift ≠ 0 or entry.id ∉ SRAM Ptrs then

6: return false

7: end if

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

58

8: return true

9: end while

B. Data Structures that are used by Hash-based

Pattern matching Algorithm.

 In order to implement the hash-based solution

several data-structures are maintained. Sub-Patterns

Hash Table (HT) replaces the TCAM in the TCAM

based algorithm. The table resides in SRAM and

contains the r patterns divided by w which is the search

window’s width. Entries with less than w bytes are

prepended (padding at the prefix) with the suffix of the

previous part. A key is calculated on the sub-pattern and

the sub-pattern is placed in the table accordingly.

1. Shift Table - A shift table for a block of characters B

as in the algorithm presented by Manber in [7] [8] [9].

The block of characters is used during preprocessing

the patterns to construct the shifting table. Within the

sliding widow, it looks at the text, B characters at a

time. For simplicity2 assume that the table size is SB,

where S is the alphabet. Each entry corresponds to a

distinct substring of length B. Let X = {x1,x2, ..,xB} be

a string corresponding to the i
th

 entry of the shift table.

There are two cases: either X appear somewhere in one

of the patterns or not. If X does not appear in any of the

patterns, it stores m−B+1 in the corresponding shift

entry, otherwise, it finds the rightmost occurrence of X

in any of the patterns that contain it; suppose it is in Pj

and that X ends at position q of Pj. Then it stores m−q in

the table. If the shift value is greater than zero, it can

safely shift. Otherwise, it is possible that the current

substring we are looking at in the text matches some

pattern in the pattern list. To avoid comparing the

substring to every pattern in the pattern list, it uses the

previous defined hash table (that minimizes the number

of patterns to be compared).

2. Patterns Table - an array of patterns ordered by a

patternID.

3. Matched Patterns List - each entry contains the

matched patterns and its corresponding end position in

the text.

IV. EXPERIMENTAL RESULTS

 The proposed Hash Based pattern matching NIPS

system and the NIPS system using earlier RTCAM

Algorithm was developed on Java platform. The

performance comparison was done for the same rule set

on different TCAM width for RTCAM and on different

block size for Hash algorithm. The signature pattern was

obtained from the Snort rule list payload-content in the

snort database. Basically these snort signatures are

shorter (average is only 12 bytes). For the same

signature set the TCAM width and Block size is varied

in order to observe the variations in the memory

consumptions which is as shown.

 It can be noted that the memory consumed by

RTCAM Based algorithm is comparatively more than

the memory consumed by the Hash based method for

the same signature set size. If the TCAM width

increases memory consumption also increases

considerably to a larger value. This is a major drawback

in the RTCAM method as the TCAM width must be

carefully chosen as it plays an important role during

hardware implementation.

 The proposed hash based system in this paper

consumes around 0.36 times less memory than the

memory used by the RTCAM method for a initial

smaller TCAM width and block size. But as the TCAM

width and the block size increases the memory

consumed by hash method is 0.56 times less than the

memory consumed by the RTCAM method. Hence the

proposed hash based method is comparatively efficient

than the RTCAM method.

1. When the TCAM width is 4 the memory consumed is

1448kb and when the Block Size is 4 the memory

consumed is 900kb, as illustrated in fig 2.

Fig 2 : A graph showing the memory consumed when

TCAM width = 4 and Block size = 4.

2. When the TCAM width is 6 the memory consumed is

1782kb and when the Block Size is 6 the memory

consumed is 980kb, as illustrated in fig 3.

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

59

Fig 3: A graph showing the memory consumed when

TCAM width = 6 and Block size = 6

3. When the TCAM width is 8 the memory consumed is

2512kb and when the Block Size is 8 the memory

consumed is 1107kb, as illustrated in fig 4.

Fig 4: A graph showing the memory consumed when TCAM width

= 8 and Block size = 8.

V. CONCLUSION & FUTURE WORK

 The paper proposes a NIPS system that is based on

a Hash based pattern matching algorithm that uses a

static RAM (SRAM) instead of TCAM. This paper

presents many advantages over RTCAM NIPS device.

First, The proposed hash based system consumes around

0.56 times less memory than the memory consumed by

the RTCAM method. Second, this software NIPS device

can be implemented easily with less complexity. Third

since the TCAM is replaced with the standard SRAM

the cost of hardware implementation can be reduced and

is economically suitable approach for industrial solution.

 Even though the memory consumption rate can be

reduced relatively the above solution cannot be directly

used in industrial solutions. The reason is because the

pattern's length varies quite often depending on source

from which the pattern is obtained and also the nature of

infection. For eg. the length of the ClamAV signatures

are quite long (average of 124 bytes). There is a major

difficulty in designing a unified algorithm that deals

with long patterns and short ones since the performance

is typically influenced by the overhead caused by the

short patterns. A Padding technique can be developed to

solve the above identified problem.

VI. REFERENCES

[1] Yaron weinsberg, Shimirit turz-David, Tal

Anker, "High Performance String Matching

Algorithm For NIPS", 2005, unpublished.

[2] Sarang Dharmapurikar, Praveen Krishnamurthy,

and David E. Taylor " Longest Prefix Matching

Using Bloom Filters", vol.14(2), pp.397-409,

April 2006.

[3] Haoyu Song, Sarang Dharmapurikar, Jonathan

Turner, John Lockwood " Fast Hash Table

Lookup Using Extended Bloom Filter:An Aid to

Network Processing", August 26, 2005.

[4] Mansoor Alicheery, Vijay Kumar,

Muthuprassana," A High Speed Pattern Matching

For Network IDS/IPS", vol.1, pp.187-196,2006.

[5] Sang Yun, " An Efficient TCAM Based

Implementation Of Multi Pattern Matching Using

Covered State Encoding", vol.62(2), pp.213-221,

February 2012.

[6] R. M. Karp and M. O. Rabin, "Efficient

Randomized Pattern Matching Algorithms",

Technical report TR-31-81, Harvard University,

Cambridge, MA, USA, December 1981.

[7] S. Wu and U. Manber, "Fast Text Searching with

Errors", Technical Report TR-91-11, University

of Arizona, Department of Computer Science,

June 1991.

[8] S. Wu and U. Manber. Agrep , "A Fast

Approximate Pattern-Matching Tool", In

Proceedings USENIX Winter 1992 Technical

Conference, pages 153–162, San Francisco, CA,

January 1992.

[9] S. Wu and U. Manber, "A fast Algorithm for

Multi- Pattern Searching ", Technical Report TR-

94-17, Department of Computer Science,

University of Arizona, May 1993.



