

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

86

Development of Use Case Model from Software Requirement

using in-between SBVR format at Analysis Phase

Devendrasingh Thakore
1
 & Akhilesh R. Upadhyay

2

1
JJTU, India

2
Dept.of EC Engineering, Sagar Institute of Research and Technology – Bhopal, 462041(M.P.), India

E-mail : deventhakur@yahoo.com
1
, akhileshupadhyay@yahoo.com

2

Abstract – Software Analysis process is accomplished by

constructing several models of system such as use case

model, class model. To take out the basic building blocks

such as actor, use cases, and relationships between them

use case models from the unstructured textual requirement

specification document expressed in English like natural

language is not an easy task. There are plenty Nouns (Real

Time Entities or actors), verbs or verbs phrases (Events or

use cases), in the system requirement document. Also the

size of unstructured source requirement document, writing

style, present in Natural Language (NL) works as barriers

to find out such analysis phase model elements.

Thus analyzing requirements and generating the software

artifacts to build analysis phase use case model are huge

and complex task which need automated support. In the

last two decades, major tools that can automatically

analyze the NL requirement specification and generate the

analysis models are developed. Most of the attempts are

concentrating on generation of incomplete class model.

Also none of these tools cannot be used in real time

software development as they provide with quite less

coverage and accuracy (60% to 75%) in generating

software artifacts. The key reason of lesser accuracy that

has been identified by various researchers is ambiguous

and informal nature of NL.

To beat some of these issues this paper proposes a

techniques. Initially this technique converts the NL

requirements in to some formal, controlled middle

representation of software requirement such as Semantic

Business Vocabulary and Rules (SBVR) Language

(Standard introduced by OMG) to increase in accuracy of

generated artifacts and model. Then it focuses on

identifying the software artifacts such as actors, use cases,

relationships between actor and use cases, to generate

analysis phase use case models.

Keywords – POS Tagging, OOA, UML, Use case, actor,

XMI.

I. INTRODUCTION

 In analysis phases of software development natural

language are used to describe the precise business

problem need to be resolved. But the natural language

are often complex, vague and ambiguous, sentences are

vague when they contain generalization. Some time they

are missing important information such as subject or

object needed by the verb for completeness or contains

pronouns. All these difficulty arise when any one

discuss the business problem in using natural language.

On other hand software requires more precision,

correctness and cleanness that are not found in NL. The

main Analysis is to capture a entire, definite and

consistent picture of the requirement of system and what

system must do to satisfy the user requirement and

needs. This is accomplished by constructing several

models of system. In this process user‟s needs and

wants are transformed in to set off problem statement

and requirements specification document called as

Software Requirement Specification (SRS) in natural

language (NL). After that this natural language (Such as

English) SRS are translated to the formal specifications

such as UML use case models. This translation consists

of generation of structural model of the system such as

identifying the actors and related use cases, and

relationships among them [1].

 However requirement (SRS) explained in NL can

often uncertain, imperfect, and incoherent. It is usually

job of requirement business analyst to detect and fix

potential ambiguities, inconsistencies and

incompleteness in such natural language SRS. But due

to business analyst can overlook defects in Natural

language which can lead to multiple interpretations and

difficulties in recovering implicit requirements if

analysts do not have enough domain knowledge. Also

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

87

fault occurred in this stage of software development

process can be quite expensive to fix on in later stages

of development. Thus evaluating requirements and

generating use case model is massive and difficult task

which need some automated support.

 In automated software development process the

software requirements described in natural language are

transformed in to some formal specification means that

the business models or computation independent models

are transformed in to some platform independent

module which are very near to the any of the platform

specific models or development environment. In last

few years there are so many attempts has been made to

transform the natural language business models in to

platform independent models. But these tools are not

used in real time software development process due

there lesser accuracy and coverage in generating the

formal models of system. Such tools produce 65 to 70

percentages of accuracy and coverage. The main reason

behind failure of these tools is ambiguous and casual

nature of natural languages. A better solution to this

problem is to convert the natural language business

model in to some formal representation which is very

simple for computation or machine process and also

easy to understand by human being as natural language.

Semantic Business Vocabulary and rule (SBVR)

specification is the standard developed by Object

Management Group fulfills this need. This specification

defines the vocabulary and rules for documenting the

semantics of business vocabularies, business

information, and business rules. This specification is

applicable to the domain of business vocabularies and

business rules of all kinds of business activities of all

kinds of organizations.

 This paper proposes such approach to analyze,

extract, transform and generate software artifacts from

natural language business model to build the formal

semantic models of the system. Proposed approach first

convert the natural language requirement documents in

to intermediate SBVR format for better accuracy. Then

by doing some semantic and syntactic analysis on such

SBVR intermediate result it focuses on identifying the

software artifacts such as actors, use cases, relationships

between actor and use cases, to generate use case.

II. BASIC CONCEPTS

 In this section, a brief introduction about the basic

concepts of the UML Use Case SBVR is provided

2.1 UML Use Case Model:

 “Use case model is nothing but a sequence of

transition in a system whose task is to yield to result of

measureable value to an individual actor of the system”

A use case model is graph or diagram of actors, a set of

use cases and communication relationships between

actor and use cases. Use case model defines the outside

(Actor) and inside (Use Case) of system‟s behavior.

 A use case is a special flow of events through the

system. An actor is a user playing a role with respect to

the system. Actor is a key to findings the correct use

cases. Actor carries out the use cases. In use case model

single actor can perform many use cases or a use case

may have many actors performing it. A use case must

help actor to perform a task that has some identifiable

value.

2.2 UML Class Model:

The UML class model is the main static analysis model.

This model shows the static structure of the system to be

analyzed. A class model is nothing but the collection of

the static modeling artifacts such as classes and their

relationships, and multiplicity among them connected as

graph to each other and to their contents. The key

element of class model is he classes and relationships

among them. The class can have sub artifacts as

attributes, and methods. Such model represents the

mapping of objects in the real world to actual objects to

be used in computer program.

2.3 SBVR

 SBVR is a short form of “Semantic Business

Vocabulary and Rules” which has been introduced by

Object Management Group (OMG) to reduce the gap

between Business analyst and IT persons. This is an

contemporary an better way of capturing the business

requirements in natural language like structure which is

very easy to understand for human beings and also very

simple to machine process due to its higher order of

logic foundation. One can generate a business model of

the system using the SBVR with the same

communicative influence of standard natural language.

In SBVR all specific expressions and definition of facts

and concepts used by an organization in course of

business are considered as vocabulary. Also in SBVR a

formal presentation under the business influence are

considered as rules which are used to express the

operation of particular business entity under certain

conditions.

III. BACKGROUND

 Many approaches and techniques have been

proposed up till now to automate the process of various

model generations from natural language requirement

specification. However theses approaches are not used

in real world system development due to their

limitations in coverage and accuracy generation. Also

majority of models concentrates on the class model only

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

88

and require the high order of human interaction to

complete the generated models

 CM-Builder aims at supporting the analysis stage of

development in an Object-Oriented framework. CM-

Builder uses robust Natural Language Processing

techniques to analyze software requirements texts

written in English and build an integrated discourse

model of the processed text, represented in a Semantic

Network. This Semantic Network is then used to

automatically construct an initial UML Class Model.

The initial model can be directly input to a graphical

CASE tool for further refinements by a human analyst.

 CM- Builder analyzes the requirements text and

build initial class diagram only. This model can be

visualized in graphical case tool by converting it into

standard data interchange format where human analyst

can make further refinements to generate final class

model. Also CM-builder makes the extensive use of

NLP techniques.

 A Natural Language Object Oriented Production

System (NL- OOPS) [3] generates object oriented

analysis model from SemNet obtained by parsing NL

SRS document. It considers noun as objects and

identifies the relationships among objects using links.

This approach lacks in accuracy in selecting the objects

for large systems and cannot differentiate between class

nouns and attribute nouns.

 Linguistic assistant for Domain Analysis (LIDA),

provide linguistic assistance in the model development

process. It presents a methodology to conceptual

modeling through linguistic analysis. Then gives

overview of LIDA's functionality and present its

technical design and the functionality of its components.

Finally, it presents an example of how LIDA is used in a

conceptual modeling task.

 This tool identifies model elements through assisted

text analysis and validates by refining the text

descriptions of the developing model. LIDA needs

extensive user interaction while generating models

because it identifies only a list of candidate nouns, verbs

and adjectives, which need to be categorized into

classes, attributes or operations based on user‟s domain

knowledge.

 "GOOAL" (Graphic Object Oriented Analysis

Laboratory) [5] receives a natural language (NL)

description of problem and produces the object models

taking decisions sentence by sentence. The user realizes

the consequences of the analysis of every sentence in

real time. Unique features of this tool are the underlying

methodology and the production of dynamic object

models. GOOAL produces the class diagram by

considering the validation threshold of 50% and its

coverage accuracy (Precision matrices) is very

minimum that is 78%

 NL-OOML [6] presents an approach to extract the

elements of the required system by subjecting its

problem statement to object oriented analysis. This

approach starts with assigning the parts of speech tags to

each word in the given input document. The text thus

tagged is restructured into a normalized subject-verb -

object form. Further, to resolve the ambiguity posed by

the pronouns, the pronoun resolutions are performed

before normalizing the text. Finally the elements of the

object-oriented system namely the classes, the attributes,

methods and relationships between the classes, the use-

cases and actors are identified by mapping the „parts of

speech- tagged‟ words of the natural language text onto

the Object Oriented Modeling Language elements using

mapping rules. But approximately 12.4 % of additional

classes and 7.4 % of additional methods are identified in

all the samples taken each of around 500 words. These

additionally identified candidates are those that will

usually be removed by human by intuition. Since the

system lacks this knowledge, they were also listed as

classes. Coverage accuracy is 82%

IV. PROPOSED SYSTEM METHODOLOGY

 This section describes the used methodology to

identify the artifacts which are used to generate the

models at analysis phase from natural language. This

methodology consist of automatic conversion of natural

language software requirement specification conversion

to controlled intermediate SBVR format and secondly to

identification of software artifacts and model generation,

finally visualization of generated models. Used

methodology works in different phases organized in

pipelined fashion as follows.

1. Preprocess Analysis

 This phase stars with the by reading the given

English input and tokenizing the whole input in to

individual tokens. To do so java tokenizer class is used.

After tokenizing each token is stored in separate array

list. While tokenizing the English input sentence splitter

is used to identify the boundary of each sentence.

2. Tagging

 This processed text is further given as input to Part

Of Speech (POS) tagger to identify the basic POS tags.

To do so Standard POS tagger is used which identifies

the 44 basic POS tags.

3. Morphological Analysis

 To remove the suffixes attached to noun phrases

and verb phrases this type of analysis is performed on

the tagged output from pervious phase. In this type of

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

89

analysis WordNet is used to convert the plural into

singular form also suffixes attached to verb phrases such

as “ed” are also removed.

4. Pronoun Resolution

 In this phase JavaRAP is used to replace all

possible pronouns with correct noun form up to third

person.

5. Parse Tree Generation

 Stanford Parser is used to generate parse tree from

pos tagged output for each requirements. This phase is

very useful to find out artifacts such as actors, use cases

to model the use case diagram.

6. Role Labeling and Element/Concept Identification

 In this phase role labels are identified from

preprocessed text such as performer, co actors, events,

objects and receiver in the sentences. Also in this phase

SBVR concept identification is done according to some

identification constraints such as all proper nouns are

identified to individual concepts, all common nouns are

identified as noun concepts or object type, all action

verbs are identified as verb concepts, all auxiliary verbs

are identified as fact types, possessed nouns are

identified as characteristics or attributes, indistinct

articles, plural nouns and cardinal numbers are

identified as quantification. Output of this phase is

stored in an array list.

7. Rule Generation

 To generate the SBVR rule we have to first produce

fact types, in the form of sentences which represents

some relationships between the concepts identified in

the previous phase. For that purpose use the template

such as noun-verb-noun to establish the relationship

between two concepts. Thus a fact type is created by

combining the noun concepts and verb concepts from

pervious phase array list. Generated fact type is used to

create the SBVR rule by applying various logical

formulation such as use of logical expression AND, OR

and NOT etc, Quantification token conversion rules,

possibility and obligation formulation rules are used.

8. Applying Notations

 In this phase SBVR notations are applied to

generate rules such as noun concepts are underlined,

verb concepts are italicized, keywords are bolded,

individual concepts or attributes are double underlined.

9. Artifacts Extraction

 In this phase produced SBVR vocabulary and rules

are further processed to extract the basic building blocks

or artifacts of use case. All SBVR noun concepts and

object type are tends to be actor for use case model. All

verb concepts associated to noun concepts are tend to be

use cases of that actor for use case model. Association

between actor and use cases are identified with the help

of parse tree generated as well as from the SBVR unary

fact types in the form of template noun-verb or binary

fact types created in phase

 Following figure 1 shows the process architecture

of the proposed methodology.

Fig. 1 : Process Architecture of System

V. IMPLEMENTATION DETAILS

 Steps are carried out during implementation of

Generation of Software Artifacts at Analysis Phases is

explained below along with example.

Fig. 2: Input File Contains Requirements in Natural Language

Step 1: The text file contains requirements in natural

language is as shown in figure 2 and is given as input to

the Generation of Software Artifacts at Analysis Phases

system. The file contains n numbers of words can be

given as input.

Step 2: To given above file as input to system press

“Browse” button and then press “Import” button to start

importing the natural language requirement inside the

system.

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

90

Fig. 3: Selecting the Text File for I/P to System

Fig. 4: Importing the Text File as I/P to System

Step 3: Once the input is accepted by the system, it

converts the given input requirements in to SBVR

format after pressing “SBVR” Button. It is shown in

figure 5 as below.

Fig. 5: SBVR Representation of Inputted Requirements in NL.

Step 4: SBVR Representation is Scanned and Analyzed

to generate the Use Case Model of Requirement in NL

by pressing the Button “Use Case Diagram” and is

shown in figure 6 as below.

Fig. 6: Generated Use Case Model for Requirement in NL

VI. RESULT ANALYSIS

 An evaluation methodology proposed by

Hirschman and Thompson [8] is used for the

performance evaluation. According to this methodology

the most enduring metrics of performance that have

been applied to information extraction are termed as

recall (Coverage of tool) and precision (Coverage

Accuracy of tool).These metrics may be viewed as

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

91

judging effectiveness from the application user's

perspective.

Recall = no of Relevant-returned facts / actual relevant

facts

Precision = no of relevant-returned facts / total no. of

returned facts

Output generated by our system for different case

studies is analyzed, in comparison with, output prepared

by experts manually.

To evaluate the results of System, each outcome (Actor,

use case, associations) of the systems output was

matched with the experts opinion (Nsample) (manually

generated sample solution). The outcome that accurately

classified into respective category was declared correct

(Ncorrect) otherwise incorrect (Nincorrect).

Additionally, the information that was not extracted (or

missed) by the system but it was given in the human

experts opinion (Nsample) was categorized as the

missing information (Nmissing). The calculated recall

and precision values of the solved case study are shown

in table 1.

Table 1: Result Analysis of System

The statistics of our system in Table 1 shows that this

system is able to extract almost 90% accurate results

that are matching with models generated manually.

Almost 6 % - 8% are incomplete, which are extracted by

this system and nearly about 5% are missing. Missing

artifacts could be the result of differences in

perspectives of every expert.

VII. COMPARATIVE ANALYSIS

 Many approaches and techniques have been

proposed up till now to automate the process of various

model generations from natural language requirement

specification. However theses approaches are not used

in real world system development due to their

limitations in coverage and accuracy generation. Also

majority of models concentrates on the class model only

and require the high order of human interaction to

complete the generated models

Following table 2 shows the comparison of results of

available existing system with proposed system that can

perform automated or semi-automated analysis of the

Natural Language Requirement Specifications in to

model creation. Recall value was not available for some

of the tools.

Table 2: A Comparison of Performance Evaluation with

Existing System

Tools
Recall

Value

Precision

Value

CM-Builder (Harmain,

2003)
73.00% 66.00%

GOOAL (Perez-Gonzalez,

2002)
- 78.00%

NL-OOML (Anandha,

2006)
- 82.00%

LIDA (Overmyer, 2001) 71.32% 63.17%

Extract (only Event

Extraction) (2009)
92.00% 85.00%

Implemented System 95.09% 92.82%

As the existing system uses natural languages as direct

input to tool so that their recall and precision values are

very less. Such results are there due to problems

associated with Natural Languages such as

 Ambiguous and informal nature

 Inherent semantic inconsistencies

 Complex to machine process.

 Informal sentence structure

VIII. CONCLUSION

 The primary objective of the dissertation was to

deal with the dispute of addressing confusing nature of

NL (such as English) and generate a restricted

representation of English so that the accurateness of

software processing can be improved. To tackle this

challenge this system presented a NL based automated

approach to tag and parse English software requirements

specifications and generated a controlled demonstration.

Automated object oriented analysis of SBVR

specifications of software requirements using this

system provides a superior accuracy.

 This approach describes a computerized way to take

out the software element at analysis phase. It uses

Natural Language Processing techniques to consider

Case

Study

NSa

mple

NCorre

ct

NIncorr

ect

Nmis

sing

Recal

l %

Precisi

on%

Library

System

Case

Study

76 72 6 4 94.73 92.30

Keypass

System

Case

Study

44 42 3 2 95.45 93.33

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

92

business level software requirements and builds an

incorporated analysis level model.

 This approach can be used for the identification of

software elements such as event list, use cases, classes,

their attributes, and the static relationships among them

with increase in accuracy due to use of intermediate

format SBVR.

 This Approach brings us to a very important

outcome which allows the business people work

independently of IT to analyze, design and build up their

system.

 This approach can be used for the identification of

software elements such as event list, use cases, classes,

their attributes, and the static relationships among them

with increase in accuracy due to use of intermediate

format SBVR. The outcome achieved have shown the

utility of this approach

 Across all domain over unlimited requirement size

expressed in Natural Language to generate analysis

phase software elements and models.

 in understanding functional requirements because it

gives list of events that represents the behavior of

system

 For summarization and for extraction of important

software elements in Objects Oriented Analysis

Process.

IX. REFERENCES

[1] Ali Bahrami, Chapter 6, Object Oriented

Analysis Process, in Object Oriented System

Development.

[2] H. M. Harmain and R. Gaizauskas, CM-Builder:

An Automated NL Based CASE tool, in IEEE

International Conference on automated software

engineering (2000)

[3] Mich L., NL-OOPS: From natural language to

object oriented requirement using natural

language processing system (1996)

[4] Overmyer, S. P., Benoit, L. and Owen R.,

Conceptual modeling through linguistic analysis

using LIDA. International Conference of

Software Engineering (ICSE), (2001)

[5] Hector G perez-Gonzalez and Jugal K. Kalita,

GOOAL : A Graphical Object Oriented Analysis

laboratory, ACM 1-58113-626-9/02/0011 (2002)

[6] G.S. Anandha Mala, J. Jayaradika, and G. V.

Uma, Restructuring Natrual Language Text to

Elicit Software Requirements, in proceeding of

the International Conference on Cognition and

Recognition (2006)

[7] Sanddep K. Singh, Reetesh Gupta, Sangeeta

Sabharwal, and J.P. Gupta, E-xtract : A tool for

extraction, Analysis and Classification of Events

from Textual Requirements, in IEEE 2009

international Conference on Advances in Recent

technologies in communication and Computing.

[8] Hirschman L., and Thompson, H.S. 1995.

Chapter 13 Evaluation: Overview of evaluation in

speech and natural language processing. In

Survey of the State of the Art in Human

Language Technology.

[9] OMG. 2008. Semantics of Business vocabulary

and Rules. (SBVR) Standard v.1.0.



