Development of Use Case Model from Software Requirement

using in-between SBVR format at Analysis Phase

Devendrasingh Thakore® & Akhilesh R. Upadhyay?

1 -
JJTU, India
*Dept.of EC Engineering, Sagar Institute of Research and Technology — Bhopal, 462041(M.P.), India
E-mail : deventhakur@yahoo.com?, akhileshupadhyay@yahoo.com?

Abstract — Software Analysis process is accomplished by
constructing several models of system such as use case
model, class model. To take out the basic building blocks
such as actor, use cases, and relationships between them
use case models from the unstructured textual requirement
specification document expressed in English like natural
language is not an easy task. There are plenty Nouns (Real
Time Entities or actors), verbs or verbs phrases (Events or
use cases), in the system requirement document. Also the
size of unstructured source requirement document, writing
style, present in Natural Language (NL) works as barriers
to find out such analysis phase model elements.

Thus analyzing requirements and generating the software
artifacts to build analysis phase use case model are huge
and complex task which need automated support. In the
last two decades, major tools that can automatically
analyze the NL requirement specification and generate the
analysis models are developed. Most of the attempts are
concentrating on generation of incomplete class model.
Also none of these tools cannot be used in real time
software development as they provide with quite less
coverage and accuracy (60% to 75%) in generating
software artifacts. The key reason of lesser accuracy that
has been identified by various researchers is ambiguous
and informal nature of NL.

To beat some of these issues this paper proposes a
techniques. Initially this technique converts the NL
requirements in to some formal, controlled middle
representation of software requirement such as Semantic
Business Vocabulary and Rules (SBVR) Language
(Standard introduced by OMG) to increase in accuracy of
generated artifacts and model. Then it focuses on
identifying the software artifacts such as actors, use cases,
relationships between actor and use cases, to generate
analysis phase use case models.

Keywords — POS Tagging, OOA, UML, Use case, actor,
XMI.

I. INTRODUCTION

In analysis phases of software development natural
language are used to describe the precise business
problem need to be resolved. But the natural language
are often complex, vague and ambiguous, sentences are
vague when they contain generalization. Some time they
are missing important information such as subject or
object needed by the verb for completeness or contains
pronouns. All these difficulty arise when any one
discuss the business problem in using natural language.
On other hand software requires more precision,
correctness and cleanness that are not found in NL. The
main Analysis is to capture a entire, definite and
consistent picture of the requirement of system and what
system must do to satisfy the user requirement and
needs. This is accomplished by constructing several
models of system. In this process user’s needs and
wants are transformed in to set off problem statement
and requirements specification document called as
Software Requirement Specification (SRS) in natural
language (NL). After that this natural language (Such as
English) SRS are translated to the formal specifications
such as UML use case models. This translation consists
of generation of structural model of the system such as
identifying the actors and related use cases, and
relationships among them [1].

However requirement (SRS) explained in NL can
often uncertain, imperfect, and incoherent. It is usually
job of requirement business analyst to detect and fix
potential ambiguities, inconsistencies and
incompleteness in such natural language SRS. But due
to business analyst can overlook defects in Natural
language which can lead to multiple interpretations and
difficulties in recovering implicit requirements if
analysts do not have enough domain knowledge. Also

86

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

fault occurred in this stage of software development
process can be quite expensive to fix on in later stages
of development. Thus evaluating requirements and
generating use case model is massive and difficult task
which need some automated support.

In automated software development process the
software requirements described in natural language are
transformed in to some formal specification means that
the business models or computation independent models
are transformed in to some platform independent
module which are very near to the any of the platform
specific models or development environment. In last
few years there are so many attempts has been made to
transform the natural language business models in to
platform independent models. But these tools are not
used in real time software development process due
there lesser accuracy and coverage in generating the
formal models of system. Such tools produce 65 to 70
percentages of accuracy and coverage. The main reason
behind failure of these tools is ambiguous and casual
nature of natural languages. A better solution to this
problem is to convert the natural language business
model in to some formal representation which is very
simple for computation or machine process and also
easy to understand by human being as natural language.
Semantic Business Vocabulary and rule (SBVR)
specification is the standard developed by Object
Management Group fulfills this need. This specification
defines the vocabulary and rules for documenting the
semantics of business vocabularies, business
information, and business rules. This specification is
applicable to the domain of business vocabularies and
business rules of all kinds of business activities of all
kinds of organizations.

This paper proposes such approach to analyze,
extract, transform and generate software artifacts from
natural language business model to build the formal
semantic models of the system. Proposed approach first
convert the natural language requirement documents in
to intermediate SBVR format for better accuracy. Then
by doing some semantic and syntactic analysis on such
SBVR intermediate result it focuses on identifying the
software artifacts such as actors, use cases, relationships
between actor and use cases, to generate use case.

1. BASIC CONCEPTS
In this section, a brief introduction about the basic
concepts of the UML Use Case SBVR is provided
2.1 UML Use Case Model:

“Use case model is nothing but a sequence of
transition in a system whose task is to yield to result of
measureable value to an individual actor of the system”

A use case model is graph or diagram of actors, a set of
use cases and communication relationships between
actor and use cases. Use case model defines the outside
(Actor) and inside (Use Case) of system’s behavior.

A use case is a special flow of events through the
system. An actor is a user playing a role with respect to
the system. Actor is a key to findings the correct use
cases. Actor carries out the use cases. In use case model
single actor can perform many use cases or a use case
may have many actors performing it. A use case must
help actor to perform a task that has some identifiable
value.

2.2 UML Class Model:

The UML class model is the main static analysis model.
This model shows the static structure of the system to be
analyzed. A class model is nothing but the collection of
the static modeling artifacts such as classes and their
relationships, and multiplicity among them connected as
graph to each other and to their contents. The key
element of class model is he classes and relationships
among them. The class can have sub artifacts as
attributes, and methods. Such model represents the
mapping of objects in the real world to actual objects to
be used in computer program.

2.3 SBVR

SBVR is a short form of “Semantic Business
Vocabulary and Rules” which has been introduced by
Object Management Group (OMG) to reduce the gap
between Business analyst and IT persons. This is an
contemporary an better way of capturing the business
requirements in natural language like structure which is
very easy to understand for human beings and also very
simple to machine process due to its higher order of
logic foundation. One can generate a business model of
the system using the SBVR with the same
communicative influence of standard natural language.
In SBVR all specific expressions and definition of facts
and concepts used by an organization in course of
business are considered as vocabulary. Also in SBVR a
formal presentation under the business influence are
considered as rules which are used to express the
operation of particular business entity under certain
conditions.

I1l. BACKGROUND

Many approaches and techniques have been
proposed up till now to automate the process of various
model generations from natural language requirement
specification. However theses approaches are not used
in real world system development due to their
limitations in coverage and accuracy generation. Also
majority of models concentrates on the class model only

87

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

and require the high order of human interaction to
complete the generated models

CM-Builder aims at supporting the analysis stage of
development in an Object-Oriented framework. CM-
Builder wuses robust Natural Language Processing
techniques to analyze software requirements texts
written in English and build an integrated discourse
model of the processed text, represented in a Semantic
Network. This Semantic Network is then used to
automatically construct an initial UML Class Model.
The initial model can be directly input to a graphical
CASE tool for further refinements by a human analyst.

CM- Builder analyzes the requirements text and
build initial class diagram only. This model can be
visualized in graphical case tool by converting it into
standard data interchange format where human analyst
can make further refinements to generate final class
model. Also CM-builder makes the extensive use of
NLP techniques.

A Natural Language Object Oriented Production
System (NL- OOPS) [3] generates object oriented
analysis model from SemNet obtained by parsing NL
SRS document. It considers noun as objects and
identifies the relationships among objects using links.
This approach lacks in accuracy in selecting the objects
for large systems and cannot differentiate between class
nouns and attribute nouns.

Linguistic assistant for Domain Analysis (LIDA),
provide linguistic assistance in the model development
process. It presents a methodology to conceptual
modeling through linguistic analysis. Then gives
overview of LIDA's functionality and present its
technical design and the functionality of its components.
Finally, it presents an example of how LIDA is used in a
conceptual modeling task.

This tool identifies model elements through assisted
text analysis and validates by refining the text
descriptions of the developing model. LIDA needs
extensive user interaction while generating models
because it identifies only a list of candidate nouns, verbs
and adjectives, which need to be categorized into
classes, attributes or operations based on user’s domain
knowledge.

"GOOAL" (Graphic Object Oriented Analysis
Laboratory) [5] receives a natural language (NL)
description of problem and produces the object models
taking decisions sentence by sentence. The user realizes
the consequences of the analysis of every sentence in
real time. Unique features of this tool are the underlying
methodology and the production of dynamic object
models. GOOAL produces the class diagram by
considering the validation threshold of 50% and its

coverage accuracy (Precision
minimum that is 78%

matrices) is very

NL-OOML [6] presents an approach to extract the
elements of the required system by subjecting its
problem statement to object oriented analysis. This
approach starts with assigning the parts of speech tags to
each word in the given input document. The text thus
tagged is restructured into a normalized subject-verb -
object form. Further, to resolve the ambiguity posed by
the pronouns, the pronoun resolutions are performed
before normalizing the text. Finally the elements of the
object-oriented system namely the classes, the attributes,
methods and relationships between the classes, the use-
cases and actors are identified by mapping the ‘parts of
speech- tagged’” words of the natural language text onto
the Object Oriented Modeling Language elements using
mapping rules. But approximately 12.4 % of additional
classes and 7.4 % of additional methods are identified in
all the samples taken each of around 500 words. These
additionally identified candidates are those that will
usually be removed by human by intuition. Since the
system lacks this knowledge, they were also listed as
classes. Coverage accuracy is 82%

IV. PROPOSED SYSTEM METHODOLOGY

This section describes the used methodology to
identify the artifacts which are used to generate the
models at analysis phase from natural language. This
methodology consist of automatic conversion of natural
language software requirement specification conversion
to controlled intermediate SBVR format and secondly to
identification of software artifacts and model generation,
finally visualization of generated models. Used
methodology works in different phases organized in
pipelined fashion as follows.

1. Preprocess Analysis

This phase stars with the by reading the given
English input and tokenizing the whole input in to
individual tokens. To do so java tokenizer class is used.
After tokenizing each token is stored in separate array
list. While tokenizing the English input sentence splitter
is used to identify the boundary of each sentence.

2. Tagging

This processed text is further given as input to Part
Of Speech (POS) tagger to identify the basic POS tags.
To do so Standard POS tagger is used which identifies
the 44 basic POS tags.

3. Morphological Analysis

To remove the suffixes attached to noun phrases
and verb phrases this type of analysis is performed on
the tagged output from pervious phase. In this type of

88

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

analysis WordNet is used to convert the plural into
singular form also suffixes attached to verb phrases such
as “ed” are also removed.

4. Pronoun Resolution

In this phase JavaRAP is used to replace all
possible pronouns with correct noun form up to third
person.

5. Parse Tree Generation

Stanford Parser is used to generate parse tree from
pos tagged output for each requirements. This phase is
very useful to find out artifacts such as actors, use cases
to model the use case diagram.

6. Role Labeling and Element/Concept Identification

In this phase role labels are identified from
preprocessed text such as performer, co actors, events,
objects and receiver in the sentences. Also in this phase
SBVR concept identification is done according to some
identification constraints such as all proper nouns are
identified to individual concepts, all common nouns are
identified as noun concepts or object type, all action
verbs are identified as verb concepts, all auxiliary verbs
are identified as fact types, possessed nouns are
identified as characteristics or attributes, indistinct
articles, plural nouns and cardinal numbers are
identified as quantification. Output of this phase is
stored in an array list.

7. Rule Generation

To generate the SBVR rule we have to first produce
fact types, in the form of sentences which represents
some relationships between the concepts identified in
the previous phase. For that purpose use the template
such as noun-verb-noun to establish the relationship
between two concepts. Thus a fact type is created by
combining the noun concepts and verb concepts from
pervious phase array list. Generated fact type is used to
create the SBVR rule by applying various logical
formulation such as use of logical expression AND, OR
and NOT etc, Quantification token conversion rules,
possibility and obligation formulation rules are used.

8. Applying Notations

In this phase SBVR notations are applied to
generate rules such as noun concepts are underlined,
verb concepts are italicized, keywords are bolded,
individual concepts or attributes are double underlined.

9. Artifacts Extraction

In this phase produced SBVR vocabulary and rules
are further processed to extract the basic building blocks
or artifacts of use case. All SBVR noun concepts and
object type are tends to be actor for use case model. All

verb concepts associated to noun concepts are tend to be
use cases of that actor for use case model. Association
between actor and use cases are identified with the help
of parse tree generated as well as from the SBVR unary
fact types in the form of template noun-verb or binary
fact types created in phase

Following figure 1 shows the process architecture
of the proposed methodology.

TEMPLATE

Preprocess| o INFOIN UL
Analysis XMI Compl:
Analyzer o ingat

Tool

Requirement
Document
inEnglish

(SBVR Format)

Fig. 1 : Process Architecture of System

V. IMPLEMENTATION DETAILS

Steps are carried out during implementation of
Generation of Software Artifacts at Analysis Phases is
explained below along with example.

B Libraryexample - Notepad

[EX
Fie Edt Fomat Vew Hep

In Tibrary each customer s known as @ menber and is issued & membership card. A
That shows a unique member rumber,

Alang with the membership nusber other details on a customer must be kept such as 2 name, address, and

date of birth,

The Tibrary is made up of a nunber of subject sections.

Exch section is denoted by a classification mark.

A Toan item is uniquely dentified by a bar code.

There are two types of Toan items, language tapes, and books,

A Tanguage tape has a title Tanguage (.0. French), and Tevel (e.g. beginner).

4 book has a title, and author(s).
A customer may borrow up to @ maximum of 8 itens,

An item can be borrowed, reserved or renewed to extend a current loan.

when an ten is ssued the customer's membership number

is scanned via 2 bar code reader or entered manuzlly.

1f the membership is still valid and the number of Ttems on Toan Tess than §,
the book bar code s read, either

via the bar code reader or entered manually.

¥

{)

Fig. 2: Input File Contains Requirements in Natural Language

Step 1: The text file contains requirements in natural
language is as shown in figure 2 and is given as input to
the Generation of Software Artifacts at Analysis Phases
system. The file contains n numbers of words can be
given as input.

Step 2: To given above file as input to system press
“Browse” button and then press “Import” button to start
importing the natural language requirement inside the
system.

89

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

LER

=
Class Diagram Extraction (=) :} .

In orary gach custommer isknowm s 3 emnber and i isted membership cand

Select The Text File : [— ‘ Browse ’ . msw‘s 4 m@bﬂﬁmﬁa AL
Along i the memhtesiy e ol et & customer st be kept such e a e, abiess, e of b,

The Bbrary is made vp of 2 unober of subjet sectons .

Exch ection i denoted by a casfieeon k.

Al e i el ideeified by & b code

{There et types o an s, g tges, e bk

e e s s g

French), and v (2

bt

Import ‘ ’ SBVR ‘ ’ 0CL ‘ ‘ Class Des... | ‘ Use Case D... A bonk B i, o) M

A costome ey eerow g o e of s

Antem can beborrowed,reserved o renewed 1 zad et ban

Whenn s ued i i’ mebership muer s tamed v barcode e o entered el v

Process:

Class Diagram Extraction Q@@ | (lose

Fig. 5: SBVR Representation of Inputted Requirements in NL.

- P ————
Select The TextFile: [iExamplesiLibraryexample. | l Browse ‘

Step 4: SBVR Representation is Scanned and Analyzed
to generate the Use Case Model of Requirement in NL
by pressing the Button “Use Case Diagram” and is
shown in figure 6 as below.

Process: B Usecase Diagram

umlucase.umf*

g S
=

library

Standard buttons

entered
% Diagram tools

iLh}
o o Eelent

Import H SBVR ‘ l 0CL H Class Des... H Use Case D...

A Actor

Fig. 3: Selecting the Text File for I/P to System

B Class Diagram Extraction Q@@ %

customer

har code reader
Use case

% \ Interaction

reserved

SeectThTonie: EanesLiernged | Bowse | %/. (i)
ftem @ Eiended unctons

X

mernbership nurber

" sextends : precises the beha..

* «ncludes :includes callto

bookbarcode A Generalization :is amore sp...

*\ Note connector

Process :

Fig. 6: Generated Use Case Model for Requirement in NL

‘ Import H SBVR ‘ ‘ 0CL H Class Des... H Use CaseD... ‘

VI. RESULT ANALYSIS

An evaluation methodology proposed by
Hirschman and Thompson [8] is used for the
performance evaluation. According to this methodology

Fig. 4: Importing the Text File as I/P to System

Step 3: Once the input is accepted by the system, it the most enduring metrics of performance that have
converts the given input requirements in to SBVR been applied to information extraction are termed as
format after pressing “SBVR” Button. It is shown in recall (Coverage of tool) and precision (Coverage
figure 5 as below. Accuracy of tool).These metrics may be viewed as

ISSN (Print) : 2319 — 2526, Volume-2, Issue-2, 2013
90

International Journal on Advanced Computer Theory and Engineering (IJACTE)

judging effectiveness from
perspective.

the application user's

Recall = no of Relevant-returned facts / actual relevant
facts

Precision = no of relevant-returned facts / total no. of
returned facts

Output generated by our system for different case
studies is analyzed, in comparison with, output prepared
by experts manually.

To evaluate the results of System, each outcome (Actor,
use case, associations) of the systems output was
matched with the experts opinion (Nsample) (manually
generated sample solution). The outcome that accurately
classified into respective category was declared correct
(Ncorrect) otherwise incorrect (Nincorrect).
Additionally, the information that was not extracted (or
missed) by the system but it was given in the human
experts opinion (Nsample) was categorized as the
missing information (Nmissing). The calculated recall
and precision values of the solved case study are shown
in table 1.

Table 1: Result Analysis of System

Precisi
on%

Recal
1 %

Nmis
sing

NSa |NCorre
mple ct

Nincorr
ect

Case
Study

Library
System
Case
Study

76 72 6 4 19473 [92.30

Keypass
System
Case
Study

44 42 3 2 (9545 |93.33

The statistics of our system in Table 1 shows that this
system is able to extract almost 90% accurate results
that are matching with models generated manually.
Almost 6 % - 8% are incomplete, which are extracted by
this system and nearly about 5% are missing. Missing
artifacts could be the result of differences in
perspectives of every expert.

VII. COMPARATIVE ANALYSIS

Many approaches and techniques have been
proposed up till now to automate the process of various
model generations from natural language requirement
specification. However theses approaches are not used
in real world system development due to their
limitations in coverage and accuracy generation. Also

majority of models concentrates on the class model only
and require the high order of human interaction to
complete the generated models

Following table 2 shows the comparison of results of
available existing system with proposed system that can
perform automated or semi-automated analysis of the
Natural Language Requirement Specifications in to
model creation. Recall value was not available for some
of the tools.

Table 2: A Comparison of Performance Evaluation with
Existing System

Tools Recall Precision

Value Value

CM-Builder (Harmain, 0 0
2003) 73.00% 66.00%

GOOAL (Perez-Gonzalez, 0
2002) - 78.00%

NL-OOML (Anandha, 0
2006) - 82.00%
LIDA (Overmyer, 2001) 71.32% 63.17%

Extract (only Event 0 0
Extraction) (2009) 92.00% 85.00%
Implemented System 95.09% 92.82%

As the existing system uses natural languages as direct
input to tool so that their recall and precision values are
very less. Such results are there due to problems
associated with Natural Languages such as

Ambiguous and informal nature
¢ Inherent semantic inconsistencies
e Complex to machine process.

Informal sentence structure

VIIl. CONCLUSION

The primary objective of the dissertation was to
deal with the dispute of addressing confusing nature of
NL (such as English) and generate a restricted
representation of English so that the accurateness of
software processing can be improved. To tackle this
challenge this system presented a NL based automated
approach to tag and parse English software requirements
specifications and generated a controlled demonstration.
Automated object oriented analysis of SBVR
specifications of software requirements using this
system provides a superior accuracy.

This approach describes a computerized way to take
out the software element at analysis phase. It uses
Natural Language Processing techniques to consider

91

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

business level software requirements and builds an
incorporated analysis level model.

This approach can be used for the identification of
software elements such as event list, use cases, classes,
their attributes, and the static relationships among them
with increase in accuracy due to use of intermediate
format SBVR.

This Approach brings us to a very important
outcome which allows the business people work
independently of IT to analyze, design and build up their
system.

This approach can be used for the identification of
software elements such as event list, use cases, classes,
their attributes, and the static relationships among them
with increase in accuracy due to use of intermediate
format SBVR. The outcome achieved have shown the
utility of this approach

e Across all domain over unlimited requirement size
expressed in Natural Language to generate analysis
phase software elements and models.

e in understanding functional requirements because it
gives list of events that represents the behavior of
system

e For summarization and for extraction of important
software elements in Objects Oriented Analysis
Process.

IX. REFERENCES

[1] Ali Bahrami, Chapter 6, Object Oriented
Analysis Process, in Object Oriented System
Development.

[2] H. M. Harmain and R. Gaizauskas, CM-Builder:
An Automated NL Based CASE tool, in IEEE
International Conference on automated software
engineering (2000)

(3]

[4]

(5]

6]

[7]

(8]

[9]

Mich L., NL-OOPS: From natural language to
object oriented requirement using natural
language processing system (1996)

Overmyer, S. P., Benoit, L. and Owen R,
Conceptual modeling through linguistic analysis
using LIDA. International Conference of
Software Engineering (ICSE), (2001)

Hector G perez-Gonzalez and Jugal K. Kalita,
GOOAL : A Graphical Object Oriented Analysis
laboratory, ACM 1-58113-626-9/02/0011 (2002)

G.S. Anandha Mala, J. Jayaradika, and G. V.
Uma, Restructuring Natrual Language Text to
Elicit Software Requirements, in proceeding of
the International Conference on Cognition and
Recognition (2006)

Sanddep K. Singh, Reetesh Gupta, Sangeeta
Sabharwal, and J.P. Gupta, E-xtract : A tool for
extraction, Analysis and Classification of Events
from Textual Requirements, in IEEE 2009
international Conference on Advances in Recent
technologies in communication and Computing.

Hirschman L., and Thompson, H.S. 1995.
Chapter 13 Evaluation: Overview of evaluation in
speech and natural language processing. In
Survey of the State of the Art in Human
Language Technology.

OMG. 2008. Semantics of Business vocabulary
and Rules. (SBVR) Standard v.1.0.

SO®

92

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

