

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

105

An Efficient Query Processing Search

Using Textual and Spatial Relevances

Santhanakrishnan. C, Sivaprakasam. V,

Rajasekar. R, Sudhakar. D & Lourdu Michael Antony. K

Department of Computer Science, SRM University, Chennai -603 203

E-mail : santhanakrishnan18@gmail.com,

sivaprakasam98.6@gmail.com, rajasekar3388@gmail.com

Abstract – Geographic search engine query processing is

different in that it requires a combination of textual and

spatial data, it retrieves a document that is relevant to the

query keywords and the location with respects to ranks the

documents that are retrieved according to textual and

spatial relevance to the query. The proposed IR-tree with a

top-k document search algorithm for efficient query

processing facilitates four major tasks in document

searches: they are 1) spatial narrowing, 2) textual

narrowing, 3) relevance computation and 4)rank the

document in a integrated manner. The lack of an efficient

index that can simultaneously handle both the textual and

spatial aspects of the documents makes existing geographic

search engines in efficient in answering geographic queries.

IR-tree adopts different weights on textual and spatial

relevance of documents search at the runtime. A set of

comprehensive experiments over a wide range of scenarios

has been conducted and the experiment results

demonstrate that IR-tree outperforms the state-of-the art

approaches for geographic document searches.

Keywords – Geographic document search, index, search

algorithm and IR-tree.

I. INTRODUCTION

 An information retrieval process begins when a user

enters a query into the system. Queries are formal

statements of information needs. In information retrieval

a query does not uniquely identify a single object in the

collection. Instead, several objects may match the query,

perhaps with different degrees of relevancy. Most IR

systems compute a numeric score on how well each

matches the query, and rank the objects according to this

value. The top ranking objects are then shown to the

user. The process may then be iterated if the user wishes

to refine the query. Many different measures for

evaluating the performance of information retrieval

systems have been proposed. The measures require a

collection of documents and a query. All common

measures described here assume a ground truth notion of

relevancy: every document is known to be either relevant

or non-relevant to a particular query.

 A geographic search engine is required to quickly

return documents of high relevance in both textual and

spatial aspects to a given geographic query. However,

designing an efficient index structure for both textual and

spatial information is not trivial, as four major challenges

need to be overcome. First, each keyword in the

documents is usually treated as one dimension in the

document space. Indexes for document search need to

cover a very large high-dimensional search space.

Second, words and locations in geographic documents

have different forms of representations and

measurements of relevances to a query. A coherent index

that can seamlessly integrate these two aspects of

geographic documents is very desirable. Third, the words

and location of a document have separate influences on

the overall relevance of the document to a query, while

the relative importance of textual and spatial relevance is

very much subjective to the user. Various combinations

of these two factors are necessary to accommodate

diversified user needs. Thus, an ideal index should allow

search algorithms to adapt to different weights between

textual and spatial relevance of documents at the

runtime. Last but not the least, the index structure

together with an appropriate search algorithm has to

facilitate efficient determination of both textual relevance

and spatial relevance of the documents while performing

document ranking in order to guarantee high search

efficiency. However, existing approaches are inefficient

in processing geographic document search. This

motivates to design an efficient index structure, namely,

IR-tree, for geographic search engines which effectively

addresses all four challenges discussed above. The

strength of IR-tree lays in its ability to perform document

search, document relevance computation, and document

mailto:sivaprakasam98.6@gmail.com

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

106

ranking in an integrated fashion. In brief, IR-tree indexes

both the textual and spatial contents of documents that

enable spatial pruning and textual filtering to be

performed at the same time during query processing. A

top-k document search algorithm based on IR-tree

combines both the search and ranking processes, thus

effectively reducing the number of documents

examined.

II. IR TREE

 IR tree is a tree data structure which is used as an

index to handle location based queries. IR tree is

designed such that it performs spatial clustering first and

then textual filtering. Here first spatial filtering is done so

that search space can be abridged because there may be

many documents that are textually related but only very

few of those are bounded within spatial scope. Now

textual filtering is done so as to reduce search cost.

Finally, the joint relevance and ranking is done

simultaneously such that, as soon as top k (the number of

documents to be retrieved) documents are obtained the

search process stops.

 Coming to the design issue, index structure must be

designed in proper way as each textual word in

documents is treated as a dimension. Document space

need to cover many very high dimensional spaces. In

addition to that spatial locations and textual words have

their own representations and measurements. So index

must integrate these two aspects so that they must be

compatible.

 Our IR Tree is designed to perform spatial filtering,

textual filtering, relevance computation, and ranking

simultaneously. Even storage and access overheads are

considered.

2.1 IR Tree Structure

 IR tree is designed in such a way that it clusters

spatial documents and abstracts textual documents under

various granularities [1]. All the spatially related

documents are clustered so that any document that does

not belong to that region requested by the user, can be

pruned as and then as unrelated. All textual words are

represented using inverted files. Each node has

document précis such that if the query keyword is

present in that node then it can traverse according to the

nodes pointing it. IR tree is a collection of nodes.

 It consists of a root node, few non leaf nodes, and

few leaf nodes.

2.1.1. Leaf nodes

 Each leaf node is linked to an inverted file. All the

inverted files consist of list of words, such that each

word is pointed to list of documents that contain the

particular word. It can be represented as shown in fig 2

2.1.2. Non leaf nodes

 All the non leaf nodes consist of document précis.

Document précis is nothing but collection of

information regarding nod’s spatial region, number of

documents that come under that particular node. It even

contains the WF and IWF. It is shown in fig 3. In brief,

let the non leaf node be node i, then will have many

children nodes to node i. Document précis contains

1. Mi: It is the Minimal Bounding Box that covers all

the locations of the documents under node i. It is

nothing but a small rectangular region that covers

all the locations in the document set under the node

i.

2. |Wi|: It is the cardinality of the documents that

come under the node i. i.e., the number of

documents that come under node i.

3. WF and IWF pair values: WFt,w is the Word

Frequency i.e.; it is the measure of frequency of a

word t that occurs in a document w. IWFt,w is the

Inverse Web page Frequency , the number of

documents in the document set W that contain one

or more occurrences of textual word t. This pair

helps in computing the relevance just by checking

the WF and IWF values as the node need not be

considered if the pair value is low.

Fig. 1: Leaf node representation

2.2 IR Tree operations

 The IR-tree can be manipulated with three

operations, namely, bulk loading documents, inserting

documents, and deleting documents. Given a set of

documents, bulk loading creates an IR-tree from scratch.

The pseudocode is depicted in Algorithm 1. As a brief

description, it first clusters documents based on their

spatial locations into leaf-level entries, and then groups

the formed entries as nodes in a bottom-up fashion

repeatedly until the root is formed.

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

107

ALGORITHM 1: IR TREE CONSTRUCTION

INPUT: a document set, D; minimal node fan-out, min;

maximal node fan-out, max;

OUTPUT: the root of an IR-tree

PROCEDURE

1. Ne ←Ø

2. for each d Є D do

3. geocode d and represent Ld with MBB md;

4. if ∃e Є Ne , me = md then

5. add d to e’s document set De;

6. else

7. create a new entry e;

8. set me ← md and De ← {d};

9. Ne ← Ne U {e};

10. end if

11. end for

12. for each e Є Ne do

13. build inverted file with each list lww.r.t. every word

w in at least one document d Є De

14. end for

15. while| Ne| > nmax do

16. cluster Ne according to min/max into nodes,

represent as new entries N’e; form document

summary for e in N’e;

17. Ne ← N’e;

18. end while

19. create the root node to cover Ne and their document

summaries;

20. output the root node;

III. TEXT RETRIEVAL

 Information retrieval (e.g. Web search engines)

concerns essentially with two main activities: indexing

and searching. Indexing refers to representing data for

the purpose of efficient retrieval, and is done after pre-

processing operations have taken care of extracting

appropriate items (i.e. tokenizing text). Various text

indexing methods have been developed. Inverted

indexes are the most popular technique, consisting of a

set of inverted lists, one for each occurring word or

index term. The inverted list for a term is a sorted list of

positions, or hits, where the term appears in the

collection. A hit consists of a document identifier and

the position of the term within it, often containing

additional information useful for ranking (e.g. HTML

markup). Figure 1 shows a forward index (usually

created as a first step in making an inverted index) and

an inverted index for two example documents.

 Searching involves the use of the structure built in

the indexing stage for processing queries. A typical

query contains terms and operators (i.e. disjunction,

conjunction and filters). The indexes are examined to

find matching documents, and a similarity score is

computed between the query and each document. A

ranked list is finally computed according to the

similarity scores. The term weighting and document

ranking function known as Okapi BM25 is the state-of-

the-art in ranking results for text IR, and extensions to

HTML documents have also been proposed.

 In Web IR, citations and hypertext links are

commonly combined with document content to

improve ranked retrieval. Page Rank is the most popular

link-based ranking algorithand researchers have

evaluated different techniques for combining standard

text-based techniques with link-based ranking scores.

IV. RETRIEVAL WITH GEOSCOPES

 Currently, two types of approaches are used by

existing geographic search engines, namely, Approach I

that uses separated indexes for spatial information and

textual information, and Approach II that uses a

combined index. However, they both are not efficient.

Approach I logically extends conventional textual

search engines with spatial filtering capability of Quad-

tree, R-tree, and Grid index as suggested in respectively.

Step 1:Retrieving textually relevant documents with

respect to query keywords via a conventional textual

index.

Step 2: Filtering out the documents obtained from Step 1

that are not covered by the query spatial scope.

Step 3: Ranking the documents from Step 2 based on the

joint textual and spatial relevances in order to return the

ranked results to the user.

 Approach I is inefficient. First of all, a keyword-

based search may retrieve a large number of textually

relevant documents that are outside the spatial scope.

Take our evaluation as an example. More than 90

percent of the textually relevant documents are outside

the query spatial scopes. Although it is possible to

reorder Steps 1 and 2 based on their selectivity,

performance improvement is rather limited if the

selectivity in Steps 1 and 2 are both high. Besides, the

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

108

ranking process is not incremental, i.e., it has to sort all

of the candidate documents based on the joint textual

and spatial relevances in Step 3 in order to find the top-k

documents.

 In addition to having geo-scopes associated with the

documents, and similarly to text IR, retrieving

documents with basis on geographical. The relevance of

a location can hypothesize with respect to a query region

increases with decreasing Euclidean distance between

them. The extent of overlap can also be used to measure

spatial relevance. For instance, the greater the overlap

between the two regions, the greater the assumed

relevance. Besides spatial distance, we can define

notions of topological distance between locations.

Hierarchical measures can, for instance, use the number

of non-common parents between a pair of places within

the hierarchies to which they belong or the minimum

number of direct relationships separating both places at

an ontology . Besides edge-counting, semantic similarity

Measures can also take into consideration hierarchy

depth, or even things like language, population, and

non-geographical relations. The problem of measuring

similarity in hierarchical semantic structures has in fact

been extensively studied. Combinations of semantic and

spatial methods can also be used to create hybrid

metrics, which in turn can be further combined with

thematic similarity to create an integrated Geo-IR

relevance ranking metric. A good motivation for using

semantic similarity is that Euclidean space has been

noted as unsuitable for modeling geographical

proximity. The concept of proximity is asymmetric, as

people can consider A is near B while considering B is

not near A. This asymmetry is related to the sizes and

importance of geographical objects (e.g. total population

or economic relevance), and the existing relationships

with other geographical objects.

Fig. 2: Rectangles arranged in R-tree hierarchy

 Different multi-dimensional indexes have been

proposed for managing spatial data, including grid

indexes, quad-trees, R-trees, kd- trees, and space filling

curves such as Z-order . Since geoscopes can be seen as

spatial footprints, these schemes can be used for

document retrieval in a Geo-IR system. A geo-retrieval

algorithm can follow this general guideline:

1. Transform the location and the spatial operators in

the query into a geo-scope or more, if the query

cannot be disambiguated into a single geo-scope.

2. Rank each geo-scope in the set according to how

relevant they are to the query location.

3. Get the ranked list of documents matching the set of

geoscopes. Ranking is based on the relevance of the

documents to their corresponding scopes, obtained

from the (pre-ordered) index, combined with the

relevance score assigned to each scope from the

query (e.g. a linear combination).

V. TOP K-DOCUMENT RETRIEVAL

 After buffer B containing candidate IR-tree nodes is

returned by the IDF Calculation algorithm, Top-k

Document Retrieval algorithm as the second step of the

search runs to identify the result documents. As the

candidate set might contain far more documents than k,

this step tries to avoid examining nonresult documents.

Our strategy is to evaluate the documents based on their

joint spatial and textual relevances with respect to a

given query q and to terminate the process once the top-

k result documents are obtained. Algorithm 4 lists the

pseudocode of top-k document retrieval. It maintains a

priority queue Q that orders the pending entries (either

nodes or documents) in descending order of their

relevance with respect to q (lines 1-3).

ALGORITHM 2: TOP K DOCUMENT RETRIEVAL

INPUT: a set of idf values {idfw,D,Sq, w Є Wq }; a

candidate set, B; query keyword,Wq; query spatial scope

Sq;a ratio between textual and spatial relevance,α; the

number of returned document, k

OUTPUT: the k most relevant document, R;

PROCEDURE:

1. MACRO :ψ(є) = α . ∑wєWq(tf
max

w,є.idfw,D,Sq)+(1-

α)/dist()Aє,Sq;

2. for each entry є Є B do

3. enqueue (є ,ψ(є)) to Q; //initialize Q with entries in

B

4. end for

5. while Q is not empty do

6. dequeue an entry є from Q;

7. if є is a document then

8. R ← R U {є};

9. if |R|= k then

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

109

10. goto 22;

11. end if

12. else if є is a leaf node then

13. for each document d in є’s inverted list lw, ∀w Є Wq

do

14. enqueue (d,ψ(d)) to Q;

15. end for

16. else

17. for each child c of є do

18. enqueue (c, ψ(c)) to Q;

19. end for

20. end if

21. end while

22. output R;

VI. CONCLUSION

 This approach is to present the textual information

along with the location information by giving the query

keyword. The previous result will focus on the

efficiency issues of geographic document search. At

present try to improve the high search efficiency with

geographical information and also plan to further

enhance the IR-tree index based on various access

patterns.

VII. REFERENCES

[1] D. Hiemstra, “A Probabilistic Justification for

Using TF x IDF Term Weighting in

Information Retrieval,” Int’l J. Digital Libraries,

vol. 3, no. 2, pp. 131-139, 2000.

[2] A. Markowetz, Y.-Y. Chen, T. Suel, X. Long,

and B. Seeger, “Design and Implementation of

a Geographic Search Engine,” Proc. Eighth Int’l

Workshop Web and Databases (WebDB), pp. 19-

24, 2005.

[3] Y.-Y. Chen, T. Suel, and A. Markowetz,

“Efficient Query Processing in Geographic Web

Search Engines,” Proc. ACM SIGMOD ’06, pp.

277-288, 2006.

[4] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y.

Ma, “Hybrid Index Structures for Location-Based

Web Search,” Proc. 14th ACM Int’l Conf.

Information and Knowledge Management (CIKM

’05), pp. 155- 162, 2005.

[5] V.N. Anh and A. Moffat, “Pruned Query

Evaluation Using Pre- Computed Impacts,” Proc.

ACM SIGIR ’06, pp. 372-379, 2006.

[6] I.D. Felipe, V. Hristidis, and N. Rishe, “Keyword

Search on Spatial Databases,” Proc. IEEE 24th

Int’l Conf. Data Eng. (ICDE ’08), pp. 656-665,

2008.

[7] R. Hariharan, B. Hore, C. Li, and S. Mehrotra,

“Processing Spatial- Keyword (SK) Queries in

Geographic Information Retrieval (GIR)

Systems,” Proc. 19th Int’l Conf. Scientific and

Statistical Database Management (SSDBM ’07),

pp. 16-25, 2007.

[8] E. Amitay, N. Har’El, R. Sivan, and A. Soffer,

“Web-a- Where: Geotagging Web Content,”

Proc. ACM SIGIR ’04, pp. 273-280, 2004.



