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Abstract — Clustering is the classification of patterns
(observations, data items, or features) into groups
(clusters). Cluster analysis is the organization of a
collection of patterns (usually represented as a vector of
measurements, or a point in a multidimensional space) into
clusters based on similarity The patterns within a valid
cluster are more similar to each other than they are to a
pattern belonging to a different cluster. Clustering is useful
in several exploratory pattern-analysis, grouping, decision-
making, and machine-learning situations, including data
mining, document retrieval, image segmentation, and
pattern classification. In This paper we will presents an
overview of pattern clustering methods, with a goal of
providing useful information and references to
fundamental concepts accessible to the broad community
of clustering researchers.
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K-Means clustering algorithm, Hybrid PSO algorithm.

I. INTRODUCTION

Data clustering is the process which divides a
dataset into some groups or classes. It lets the data
objects of the same group have high similarity, and the
data objects of different groups have large differences.
The similarity is often using the distance between the
objects. The data clustering usually has two classes,
namely the supervised clustering and the unsupervised
clustering. Under the supervised clustering, learning
algorithm has an external guidance signal, which offers
the class marks for its data vectors. For the unsupervised
clustering, there is not an external directive signal, and
the algorithm groups the data vectors based on distance
from each other.
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Fig. 3: After a Change B and C ae more similar than A and B
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I1. COMPONENTS OF A DATA CLUSTERING
PROCESS

Data clustering activity involves the following
steps.

1)

Pattern representation (optionally including feature
extraction and/or selection),

@)

Definition of a pattern
appropriate to the data domain,

proximity —measure

3)
(4)
(5)

Clustering or grouping,
Data abstraction (if needed),
Assessment of output (if needed).

Pattern representation refers to the number of
classes, the number of available patterns, and the
number, type, and scale of the features available to the
clustering algorithm.

Feature selection is the process of identifying the
most effective subset of the original features to use in
clustering.

Feature extraction is the use of one or more
transformations of the input features to produce new
salient features.

Pattern proximity is usually measured by a distance
function defined on pairs of patterns.
I1l. DATA CLUSTERING TECHNIQUES
Different Approaches are being used for the

purpose of identifying data sets belonging to their
respective clusters.

A. Hierarchical Clustering

A hierarchical data Clustering algorithm yields a
dendrogram representing the nested grouping of
patterns and similarity levels at which groupings
change. The operation of a hierarchical clustering
algorithm is illustrated using the two-dimensional data
set in Figure 4 .This figure depicts seven patterns
labeled A, B, C, D, E, F, and G in three clusters.

X

S
&: B
Clu::er/
€ 2
; Vs é\vclu.tell < BE 5}‘4
( B ) P
o

Fig. 4 : Points falling in three clusters

B. Hard Data Clustering vs. fuzzy Data Clustering

A hard clustering algorithm allocates each pattern
to a single cluster during its operation and in its output.
A fuzzy clustering method assigns degrees of
membership in several clusters to each input pattern. A
fuzzy clustering can be converted to a hard clustering by
assigning each pattern to the cluster with the largest
measure of membership.

B. (a) Hard Data Clustering vs. fuzzy Data Clustering

(1) Select an initial fuzzy partition of the N objects into
K clusters by selecting the N * K membership
matrix U. An element Uij of this matrix represents
the grade of membership of object xi in cluster cj.
Typically, uijE ( 0,1).

Using U, find the value of a fuzzy criterion
function, e.g., a weighted squared error criterion
function, associated with the corresponding
partition. Reassign patterns to clusters to reduce this
criterion function value and recompute U.

)

®3)

Repeat step 2 until entries in U do not change
significantly.

C. K-Means Clustering Algorithm

(1) Choose k cluster centers to coincide with k
randomly-chosen patterns or k randomly defined
points inside the hyper volume containing the
pattern set.

(2) Assign each pattern to the closest cluster center.

(3) Recompute the cluster centers using the current
cluster memberships.

(4) If a convergence criterion is not met, go to step 2.

Typical convergence criteria are: no (or minimal)
reassignment of patterns to new cluster centers,
orminimal decrease in squared error.

Several Versions of K — Means are available and
some of them try to find good initial partition so that it
is able to find minimum global value.

D. K-Means Clustering Algorithm

PSO algorithm originated from the study of social
behaviors of bird flock. Researchers found that birds
always changed direction, dispersed and clustered all of
a sudden. Their behaviors were unpredictable, but even
then the whole always kept the consistency and each of
them preserved the optimum distance as well from each
other. Through studying behaviors of the similar biotic
population, found that there is a social information
sharing mechanism in the biotic-population. A Particle
Swarm Algorithm maintains apopulation of a certain
number of particles, and every particle stands for a
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potential solution of the problems. The particles are
flying in an n-dimensional space and their position
adjustment depending on the experience of themselves
and their neighbors.

The clustering process terminates when one of the
following conditions is satisfied:

1) The number of iterations exceeds a predefined

maximum.
2)
3)
Algorithm

When change in the cluster centroids is negligible.

When there is no cluster membership change.

1. Initialize each particle to contain Nc randomly
selected cluster centroids.

2. Fort=110tyy
do
i. Foreach particle i do
ii. For each data vector Z,

a. Calculate the Euclidean distance d(Z,M;; ) to
all cluster centroids Cj;

b. Assign Z, to Cluster Cj; .
c. Calculate the fitness using equation (3)

iii. Update the global best and loc.

Hybrid Model for K-Means and PSO Clustering

The convergence rate of K-Means algorithm is
faster than the PSO algorithm, but the former usually is
not accurate clustering. In order to improve the
capability of the PSO algorithm, using the result of the
K-means algorithm as an initialized particle, so that it
can improve the convergence rate of the PSO algorithm.
The process of this mixed clustering

Hybrid PSO algorithm (KPSO) can be described as
following:

1) Execute K-means algorithm, and assign the K
cluster centric vectors from the K-means algorithm
to a particle of the particle swarm, then initialize the
other particles of the particle swarm randomly

according to the norm of data vectors;

2) Execute the PSO algorithm as presented above.

IV. CONCLUSION

In this paper, a method based on combination of
theparticle swarm optimization (PSO) and the k-mean
algorithm. The combined method has the advantage of
both PSO and k-means methods while does not inherent

their drawbacks. As the PSO algorithm successfully
searches all space during the initial stages of a global
search we used PSO algorithm at earlier stage of
PSO-KM. As long as the particles in swarm being close
to the global optimum, the algorithm switches to
k-means as it can converge faster than PSO algorithm. It
was detected the proper stage for switching from PSO to
k-means using the fitness function. The result of
experiment on five datasets including real and synthetic
data showed the hybrid algorithm outperforms K-means
and PSO clustering.
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