Sorting Data with One Swap Operation

Rama Sushil*, Sushil Kumar? & Anuj Kumar®

1%3Department of IT, SGRRITS, Dehradun, Uttarakhand, India
Wadia Institute of Himalayan Geology, Dehradun, Uttarakhand, India
E-mail : ramasushil@yahoo.co.in®, sushil_rohella@yhoo.co.in?, anuj@rediffmail.com?

Abstract — Sorting is a method that arranges the list of
elements in ascending or descending order. It is frequently
used in a large variety of important applications used by
schools, hospitals, banks and in many other organizations.
There are many sorting methods having their own Time
and Space Complexity. This paper presents a novel sorting
method named as SOS i.e. Swap Once and Sort. This
method provides the correct position to an element by only
one swap operation. It is based on the concept that, in
ascending order list, all the elements after a particular
element, will be greater than that element and vice versa
for descending order list. Its algorithm is developed and
then it is implemented in ‘C°. Its C program is run for
random data set of size 1000-30000 with the increment of
5000. For comparison purpose two parameters used are
number of swap operations and CPU time taken to sort the
given list. Comparison is performed with three existing
popular sorting methods Bubble sort, Selection sort and
Insertion sort. SOS takes lesser CPU time then all these
three sorting techniques. SOS requires lesser number of
swap operations in comparison to Bubble sort, Selection
sort. Insertion sort uses shifting of data rather than
swapping concept.

Keywords — Bubble sort, Correct position, Insertion sort,
Sorting, Selection sort, Swap.

I. INTRODUCTION

A sorting technique is an algorithm that puts
elements of a list in a certain order. Efficient sorting is
important for optimizing the use of other algorithms
(such as search, merge sort and Binary Search
algorithms) that require sorted lists to work correctly. A
good algorithm is that which gives satisfactory result for
every range of data set [1]. Sorting is the fundamental
problem of computer science and remained burning
issue for research over the last several years due to time
complexity [2]. Sorting is often used in a large variety of
critical applications and is a fundamental task that is
used by most computers. Sorting algorithm falls into
two basic categories: comparison based and non-

comparison based using swapping or shifting of data.
The comparison based sorting algorithm works on the
basis of comparing the elements. Comparison based
important algorithms are: quick sort, merge sort, heap
sort, bubble sort, and insertion sort. A non-comparison
based algorithm sorts an array without consideration of
pair wise data elements. Radix sort is a hon-comparison
based algorithm.

Some existing algorithms are very fast but complex
to implement, while some are not fast but easy to
implement. Moreover some are better option for small
size data while some for larger size data. Some sorting
algorithms are suitable for floating point numbers, some
are good for specific range, some are better for large
dataset, and some are useful for data set having non-
distinct values. There are two groups of sorting
algorithms one having complexity O(n? which include
bubble, insertion, selection and other with complexity
O(nlogn) which includes heap, merge and quick sort
techniques in average case.

In comparison based sorting techniques,
‘comparison’ and ‘swapping’ operations are to be
performed. But ‘comparison’ operation is the key
operation to be considered for ‘time complexity’
calculation of the sorting algorithm on the basis of
expression representing total number of comparison
operations while ignoring the “swapping” operations.
Although practically it is observed that swapping
operation effects the running time and increases the
CPU work load.

In this paper we are introducing a simple and
efficient novel sorting technique named “SOS: Swap
Once and Sort”. This technique places the particular
data element at correct position by only one swapping
operation. Practically it takes lesser running time than
selection and bubble sort therefore is an efficient sorting
technique for large data set.

139

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

mailto:ramasushil@yahoo.co.in
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/List_(computing)
http://en.wikipedia.org/wiki/Total_order
http://en.wikipedia.org/wiki/Sorting
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Merge_algorithm

International Journal on Advanced Computer Theory and Engineering (IJACTE)

Il. SORTING ALGORITHMS

Sorting of data (numeric or Character) always
remained in the focus for researchers. Sorting
algorithms are still being optimized or even newly
invented. In case of mobile systems and information
retrieval, efficient sorting is a major concern. Following
we describe some sorting algorithms that have used in
the context of this study and are regularly taught to IT
students. Following we include the critical discussion
of Bubblesort, Heapsort, Insertionsort, Mergesort,
Quicksort, Selectionsort, Shellsort and Shakersort [3]:

Bubblesort belongs to the family of comparison
sorting. It works by repeatedly iterating through the list
to be sorted, comparing two items at a time and
swapping them if they are in the wrong order. The
worst-case complexity is O(n®) and the best case is O(n).
Its space complexity is O(n).

Insertionsort is a naive algorithm that belongs to the
family of comparison sorting. In general insertionsort
has average time complexity of O(n%) but is known to be
efficient on data sets which are already substantially
sorted. It’s time complexity in best case is linear O(n).
Furthermore insertion sort is an in-place algorithm with
O(n) space complexity.

Heapsort is a comparison-based sorting algorithm
and part of the selection sort family. Although
somewhat slower in practice on most machines than a
good implementation of Quicksort, it has the advantage
of a worst-case time complexity of O(nlog(n)).

Mergesort was invented by John von Neumann and
belongs to the family of comparison-based sorting.
Mergesort has an average and worst-case performance
of O(nlog(n)). Unfortunately, Mergesort requires three
times the memory of in-place algorithms such as
Insertionsort.

Quicksort belongs to the family of exchange
sorting. It’s complexity in average case is O(nlog(n)),
while in worst case it requires O(n?) comparisons. It is
one of the most efficient algorithms and is used for
many sorting tasks. Its space complexity depends on
factors such as selection of right Pivot element, etc. On
average, its recursion depth is of O(log (n)) and
therefore space complexity is O(log n) as well.

Selectionsort searches for the minimum value,
exchanges it with the value in the first position and
repeats the first two steps for the remaining list. It
belongs to the family of in-place comparison sorting. Its
average case time complexity is O(n?), that is why it is
inefficient for large. Selectionsort typically outperforms
bubble sort but is generally outperformed by
Insertionsort.

More Generalized form of Insertionsort is termed as
Shellsort [4]. It is named after its inventor, Donald
Shell. It belongs to the family of in-place sorting but is
regarded to be unstable. Its worst case time complexity
is O(n?), but can be improved to O(n log (n)). Shellsort
improves Insertionsort by comparing elements separated
by a gap of several positions. This lets an element take
“bigger steps” toward its expected position. Multiple
passes over the data are taken with smaller and smaller
gap sizes. The last step of Shellsort is a plain
Insertionsort, but by then, the list of data is guaranteed
to be almost sorted.

A variant of Shellsort is Shakersort. It compares
each adjacent pair of items in a list in turn, swapping
them if necessary, and alternately passes through the list
from the beginning to the end then from the end to the
beginning. This process stops when a pass does no
swaps. Its time complexity is O(n?) in worst case, while
O(n) in best case.

I11. MATERIAL AND METHOD

In this section we discuss SOS by explaining the

steps used for sorting by giving its pseudocode in ‘c’, an

example and its implementation details with results
obtained.

A. Swap once and Sort: SoS

It is an in-place sorting technique. An in-place
algorithm is an algorithm which overwrites its input
with its output. This sorting technique is applicable on
distinct and non-distinct data set. Following is the
pseudo code for SOS.

SOS (list, n)
{ i=0; //function start
while (i <=n-1) /ffirst while loop,

{ count=0; j=i+l;

while (j < n)
{ If (list[i] > list[j]) then
Count++; J++;
}
k=0;

If (count >0) then
{ while (k<=n-1)
{
If (list[i] != list[i+count+k])

140

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

{swap the list[i] and list[i+count+k]; Break; }
else

k++ ;

else

i++

} //'end of first while loop
} // end of function

Note: variable ‘k’ increment if the pivot element
and swapped element is same it will increase the
index till when it does not find the different element
or end of array.

B. Pseudocode in ‘c’

Let us consider a set of data to be sorted is in the
‘list’ of size ‘n’. Name of the function is SOS with
arguments ‘list’ and ‘n’.

In general, procedure of applying SOS for a distinct
data set, we select the i" indexed element as a pivot
element. Than we count the number of smaller elements
coming after the pivot element. Suppose total number of
smaller elements is ‘count’ then we swap the pivot i.e.
i™ indexed element with the [count+i]™ indexed element.
That position will be the correct position of that pivot
element. After this swapping, that pivot element will not
be involved in another swapping operation.

For the data set of non-distinct elements i.e. in data
set there is repletion of some elements. In this case the
procedure remains same but if the element which is
ready to swap with pivot element is equal to the pivot
element then swap operation is not performed but we
move on to the next element and check if that element is
not equal to pivot element then perform swapping and
S0 on.

C. Example

Now, explaining the SOS with an example data of
size 10. Let us take an array named list[10] as
following:

15 12 10 16 26 5 20 7 11 24

First we select 0™ index element ‘15° as a pivot
element. Total number of smaller elements than the
pivot element is counted. Using the concept, “the right
position of any element is after the number of lesser
elements”, for ascending order list. In the list[10] there
are ‘5’ smaller elements than pivot element ‘15°. Now,

swapping the pivot element with the next 5™ element in
the list[10] i.e. swapping with the element at index value
5 in the list[10], where index is ranging from 0 to 9. It
means 15 will be swapped with 5 and list[10] becomes
as following:

5 12 10 16 26 15 20 7 11 24

We have completed the first iteration and placed the
pivot element 15 at its correct and final position. Correct
position is the position where it would be in the sorted
list and 15 is placed at its final position by just one
swapping. Element 15 is shaded with grey color as an
indication of final position of the particular element as it
would be in the sorted list.

Next we select the 0" index element as pivot
element which is ‘5°. It is found that there is no element
smaller than ‘5’in the list[10]. It means that the pivot
element is already at its final position. So, by now two
elements are at their final and correct position shown in
below list colored grey. Now, we will move at next
element 12 in the above list and following the same
steps as done for the first pivot element “15°. At this step
“12° is exchanged with its next 3™ element i.e. 26 and
list[10] elements are as following:

5 26 10 16 12 15 20 7 11 24

Similar steps will be repeated till all the elements
get their final and correct position as would be in sorted
list. Following table shows all the steps of SOS method
for sorting the above data of size 10.

5112 (10|16 | 26 | 5 | 20 | 7 | 11 | 24
5112 (10 | 16 | 26 | 15 | 20 | 7 | 11 | 24
5 (12 (10 | 16 | 26 | 15 | 20 | 7 | 11 | 24
5 (2 (10 |16 |12 | 15 | 20 | 7 | 11 | 24
5 (24|10 |16 (12 |15 |20 | 7 | 11 | 26
5 |11 (10 |16 |12 [15 | 20 | 7 | 24 | 26
5 (16 (10 | 11 |12 | 15 | 20 | 7 | 24 | 26
512010 |11 (12 |15 |16 | 7 | 24 | 26
5 7 |10 |11 | 12 | 15 | 16 | 20 | 24 | 23
5 7 | 10 |11 | 12 | 15 | 16 | 20 | 24 | 23
5 7 | 10 | 11 | 12 | 15 | 16 | 20 | 24 | 23

141

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

D. Implementation and Comparative Study

We have the run the ‘C’ code using the compiler “C
free” of SOS, bubble sort, selection sort and insertion
sort for the study of worst case running time of each
separately for same data set, following table shows the

running time taken by SOS, bubble sort, selection sort
and insertion sort.

Running time in milliseconds

Data Size SOS InsertionSort SelectionSort BubbleSort
1000 0.000 0.000 0.000 0.000
5000 0.078 0.078 0.140 0.156
10000 0.343 0.343 0.593 0.625
15000 0.750 0.765 1.328 1.421
20000 1.421 1432 2.468 2.687
25000 2.187 2.203 3.843 4.187
30000 2.953 317 4.101 4.480

Above table data shows that SOS and Insertion sort
are sorting the data of size 1000-10000 in same time,
while SOS sorts the data faster for data size 15000-
30000. With all different data sets SOS is faster than
selection sort and bubble sort. Above data is plotted in
graphical form shown below in figure 1.

iz} Sos

m Insertio, sort
a Selection sort
“ Bubble go,y

R

| SEC
RUNNING TIME IN MILL St

Fig. 1: Running time vs. Data size

We have compared the SOS with selection sort and
bubble sort on the basis of another parameter also that is
Number of swapping operations taking place to sort the
given data. Insertion sort is not the part of it as instead
of swapping, shifting operation is used in it.

Number of swapping operations in worst case

Data Size (n) SOS Selection sort Bubble sort
1000 500 499499 499500
5000 2500 12497499 12502500
10000 5000 49994999 50005000
15000 7500 112492499 112507500
20000 10000 199989999 20001000
25000 12500 312487499 312512500
30000 15000 449984999 450015000

Above data is plotted in graphical form shown below in
figure 2.

50000000

40000000

H sOs

M Selection sort

B Bubble sort
20000000

S—

30000000

NO OF SWAPPINGS

1000 -
5000 10000 45000

20000

25000 30000
DATA 517

Fig. 2: Number of swapping operations vs. Data size
IVV. DISCUSSION OF RESULTS

In fact running time taken by any particular
program depends on processor and configuration of the
system. We have used “C free” compiler to observe
running time by including the header file ‘time.h’.
Runing time is calculated by the statement run_time=
((t2-t1) / (double) CLOCKS_PER_SEC), where t1 and
t2 is the initial and ending run time respectively. We
have tested the SOS for worst case. Results show that
SOS and Insertion sort are sorting the data of size 1000-
10000 in same time, while SOS sorts the data faster for
data size 15000-30000. With all different data sets SOS

is faster than Insertion sort, selection sort and bubble
sort.

There is huge difference in number of swapping
operations used for sorting same data set in worst case
by SOS, bubble sort, selection sort and Insertion. There
are much lesser swapping operations required for SOS
in comparison to bubble sort, selection sort. Insertion
sort uses shifting operation rather than swapping to sort

142

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

the given set of data. SOS uses only n\2 swapping
operations in the worst case.

V. CONCLUSION AND FUTURE WORK

SOS has the unique concept to sort the data.
Concept of SOS is simple. It is more efficient for small
data set in comparison to insertion sort, selection sort
and bubble sort. SOS uses maximum n/2 swapping
operations to sort the given data of size ‘n’. It places the
element at its correct position, i.e. position where that
element will be in sorted list, after one swapping
operation only. In future we intend to compare it with
other existing techniques by observing the running time
and number of comparison operations of each.

V1. REFERENCES
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein (2003)."Introduction to Algorithms",
MIT Press, Cambridge, MA, 2" edition.

[1]

(2]

(3]

[4]

[5]

6]

[7]

Alfred V, Aho J, Horroroft, Jeffrey DU (2002).
Data Structures and Algorithms (India: Pearson
Education Asia).

Seymour Lipschutz (2009), “Data Structure with
C”, Schaum Series, Tata McGraw-Hill Education.

Brejov'a, B. (2001), ‘Analyzing variants of Shell
Sort’, Information Processing Letters 79(5), 223—
2217.

Lafore, R. (2002), Data Structures and
Algorithms in Java, 2nd edn, SAMS Publishing,
Indianapolis, Indiana, USA.

Robert S (1998). Algorithms in C. Addison-
Wesley Publishing Company, Inc.

Knuth E., The Art of Computer Programming
Sorting and Searching, Addison Wesley, 1998.

SO®

143

ISSN (Print) : 2319 — 2526, VVolume-2, Issue-2, 2013

