

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

139

Sorting Data with One Swap Operation

Rama Sushil
1
, Sushil Kumar

2
 & Anuj Kumar

3

1&3
Department of IT, SGRRITS, Dehradun, Uttarakhand, India

2
Wadia Institute of Himalayan Geology, Dehradun, Uttarakhand, India

E-mail : ramasushil@yahoo.co.in
1
, sushil_rohella@yhoo.co.in

2
, anuj@rediffmail.com

3

Abstract – Sorting is a method that arranges the list of

elements in ascending or descending order. It is frequently

used in a large variety of important applications used by

schools, hospitals, banks and in many other organizations.

There are many sorting methods having their own Time

and Space Complexity. This paper presents a novel sorting

method named as SOS i.e. Swap Once and Sort. This

method provides the correct position to an element by only

one swap operation. It is based on the concept that, in

ascending order list, all the elements after a particular

element, will be greater than that element and vice versa

for descending order list. Its algorithm is developed and

then it is implemented in ‘C’. Its C program is run for

random data set of size 1000-30000 with the increment of

5000. For comparison purpose two parameters used are

number of swap operations and CPU time taken to sort the

given list. Comparison is performed with three existing

popular sorting methods Bubble sort, Selection sort and

Insertion sort. SOS takes lesser CPU time then all these

three sorting techniques. SOS requires lesser number of

swap operations in comparison to Bubble sort, Selection

sort. Insertion sort uses shifting of data rather than

swapping concept.

Keywords – Bubble sort, Correct position, Insertion sort,

Sorting, Selection sort, Swap.

I. INTRODUCTION

 A sorting technique is an algorithm that puts

elements of a list in a certain order. Efficient sorting is

important for optimizing the use of other algorithms

(such as search, merge sort and Binary Search

algorithms) that require sorted lists to work correctly. A

good algorithm is that which gives satisfactory result for

every range of data set [1]. Sorting is the fundamental

problem of computer science and remained burning

issue for research over the last several years due to time

complexity [2]. Sorting is often used in a large variety of

critical applications and is a fundamental task that is

used by most computers. Sorting algorithm falls into

two basic categories: comparison based and non-

comparison based using swapping or shifting of data.

The comparison based sorting algorithm works on the

basis of comparing the elements. Comparison based

important algorithms are: quick sort, merge sort, heap

sort, bubble sort, and insertion sort. A non-comparison

based algorithm sorts an array without consideration of

pair wise data elements. Radix sort is a non-comparison

based algorithm.

 Some existing algorithms are very fast but complex

to implement, while some are not fast but easy to

implement. Moreover some are better option for small

size data while some for larger size data. Some sorting

algorithms are suitable for floating point numbers, some

are good for specific range, some are better for large

dataset, and some are useful for data set having non-

distinct values. There are two groups of sorting

algorithms one having complexity O(n
2
) which include

bubble, insertion, selection and other with complexity

O(nlogn) which includes heap, merge and quick sort

techniques in average case.

 In comparison based sorting techniques,

„comparison‟ and „swapping‟ operations are to be

performed. But „comparison‟ operation is the key

operation to be considered for „time complexity‟

calculation of the sorting algorithm on the basis of

expression representing total number of comparison

operations while ignoring the “swapping” operations.

Although practically it is observed that swapping

operation effects the running time and increases the

CPU work load.

 In this paper we are introducing a simple and

efficient novel sorting technique named “SOS: Swap

Once and Sort”. This technique places the particular

data element at correct position by only one swapping

operation. Practically it takes lesser running time than

selection and bubble sort therefore is an efficient sorting

technique for large data set.

mailto:ramasushil@yahoo.co.in
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/List_(computing)
http://en.wikipedia.org/wiki/Total_order
http://en.wikipedia.org/wiki/Sorting
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Merge_algorithm

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

140

II. SORTING ALGORITHMS

 Sorting of data (numeric or Character) always

remained in the focus for researchers. Sorting

algorithms are still being optimized or even newly

invented. In case of mobile systems and information

retrieval, efficient sorting is a major concern. Following

we describe some sorting algorithms that have used in

the context of this study and are regularly taught to IT

students. Following we include the critical discussion

of Bubblesort, Heapsort, Insertionsort, Mergesort,

Quicksort, Selectionsort, Shellsort and Shakersort [3]:

 Bubblesort belongs to the family of comparison

sorting. It works by repeatedly iterating through the list

to be sorted, comparing two items at a time and

swapping them if they are in the wrong order. The

worst-case complexity is O(n
2
) and the best case is O(n).

Its space complexity is O(n).

 Insertionsort is a naive algorithm that belongs to the

family of comparison sorting. In general insertionsort

has average time complexity of O(n
2
) but is known to be

efficient on data sets which are already substantially

sorted. It‟s time complexity in best case is linear O(n).

Furthermore insertion sort is an in-place algorithm with

O(n) space complexity.

 Heapsort is a comparison-based sorting algorithm

and part of the selection sort family. Although

somewhat slower in practice on most machines than a

good implementation of Quicksort, it has the advantage

of a worst-case time complexity of O(nlog(n)).

 Mergesort was invented by John von Neumann and

belongs to the family of comparison-based sorting.

Mergesort has an average and worst-case performance

of O(nlog(n)). Unfortunately, Mergesort requires three

times the memory of in-place algorithms such as

Insertionsort.

 Quicksort belongs to the family of exchange

sorting. It‟s complexity in average case is O(nlog(n)),

while in worst case it requires O(n
2
) comparisons. It is

one of the most efficient algorithms and is used for

many sorting tasks. Its space complexity depends on

factors such as selection of right Pivot element, etc. On

average, its recursion depth is of O(log (n)) and

therefore space complexity is O(log n) as well.

 Selectionsort searches for the minimum value,

exchanges it with the value in the first position and

repeats the first two steps for the remaining list. It

belongs to the family of in-place comparison sorting. Its

average case time complexity is O(n
2
), that is why it is

inefficient for large. Selectionsort typically outperforms

bubble sort but is generally outperformed by

Insertionsort.

 More Generalized form of Insertionsort is termed as

Shellsort [4]. It is named after its inventor, Donald

Shell. It belongs to the family of in-place sorting but is

regarded to be unstable. Its worst case time complexity

is O(n
2
), but can be improved to O(n log (n)). Shellsort

improves Insertionsort by comparing elements separated

by a gap of several positions. This lets an element take

“bigger steps” toward its expected position. Multiple

passes over the data are taken with smaller and smaller

gap sizes. The last step of Shellsort is a plain

Insertionsort, but by then, the list of data is guaranteed

to be almost sorted.

 A variant of Shellsort is Shakersort. It compares

each adjacent pair of items in a list in turn, swapping

them if necessary, and alternately passes through the list

from the beginning to the end then from the end to the

beginning. This process stops when a pass does no

swaps. Its time complexity is O(n
2
) in worst case, while

O(n) in best case.

III. MATERIAL AND METHOD

 In this section we discuss SOS by explaining the

steps used for sorting by giving its pseudocode in „c‟, an

example and its implementation details with results

obtained.

A. Swap once and Sort: SoS

 It is an in-place sorting technique. An in-place

algorithm is an algorithm which overwrites its input

with its output. This sorting technique is applicable on

distinct and non-distinct data set. Following is the

pseudo code for SOS.

SOS (list, n)

 { i=0; //function start

 while (i <= n-1) //first while loop,

 { count = 0; j = i+1 ;

 while (j < n)

 { If (list[i] > list[j]) then

 Count++ ; J++ ;

 }

 k = 0;

 If (count > 0) then

 { while (k <= n-1)

 {

 If (list[i] != list[i+count+k])

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

141

{swap the list[i] and list[i+count+k]; Break; }

 else

 k++ ;

 }

 }

 else

 i++ ;

 } // end of first while loop

 } // end of function

Note: variable „k‟ increment if the pivot element

and swapped element is same it will increase the

index till when it does not find the different element

or end of array.

B. Pseudocode in „c‟

 Let us consider a set of data to be sorted is in the

„list‟ of size „n‟. Name of the function is SOS with

arguments „list‟ and „n‟.

 In general, procedure of applying SOS for a distinct

data set, we select the i
th

 indexed element as a pivot

element. Than we count the number of smaller elements

coming after the pivot element. Suppose total number of

smaller elements is „count‟ then we swap the pivot i.e.

i
th

 indexed element with the [count+i]
th

 indexed element.

That position will be the correct position of that pivot

element. After this swapping, that pivot element will not

be involved in another swapping operation.

 For the data set of non-distinct elements i.e. in data

set there is repletion of some elements. In this case the

procedure remains same but if the element which is

ready to swap with pivot element is equal to the pivot

element then swap operation is not performed but we

move on to the next element and check if that element is

not equal to pivot element then perform swapping and

so on.

C. Example

 Now, explaining the SOS with an example data of

size 10. Let us take an array named list[10] as

following:

15 12 10 16 26 5 20 7 11 24

 First we select 0
th

 index element „15‟ as a pivot

element. Total number of smaller elements than the

pivot element is counted. Using the concept, “the right

position of any element is after the number of lesser

elements”, for ascending order list. In the list[10] there

are ‘5’ smaller elements than pivot element „15‟. Now,

swapping the pivot element with the next 5
th

 element in

the list[10] i.e. swapping with the element at index value

5 in the list[10], where index is ranging from 0 to 9. It

means 15 will be swapped with 5 and list[10] becomes

as following:

5 12 10 16 26 15 20 7 11 24

 We have completed the first iteration and placed the

pivot element 15 at its correct and final position. Correct

position is the position where it would be in the sorted

list and 15 is placed at its final position by just one

swapping. Element 15 is shaded with grey color as an

indication of final position of the particular element as it

would be in the sorted list.

 Next we select the 0
th

 index element as pivot

element which is „5‟. It is found that there is no element

smaller than „5‟in the list[10]. It means that the pivot

element is already at its final position. So, by now two

elements are at their final and correct position shown in

below list colored grey. Now, we will move at next

element 12 in the above list and following the same

steps as done for the first pivot element „15‟. At this step

„12‟ is exchanged with its next 3
rd

 element i.e. 26 and

list[10] elements are as following:

5 26 10 16 12 15 20 7 11 24

 Similar steps will be repeated till all the elements

get their final and correct position as would be in sorted

list. Following table shows all the steps of SOS method

for sorting the above data of size 10.

5 12 10 16 26 5 20 7 11 24

5 12 10 16 26 15 20 7 11 24

5 12 10 16 26 15 20 7 11 24

5 26 10 16 12 15 20 7 11 24

5 24 10 16 12 15 20 7 11 26

5 11 10 16 12 15 20 7 24 26

5 16 10 11 12 15 20 7 24 26

5 20 10 11 12 15 16 7 24 26

5 7 10 11 12 15 16 20 24 23

5 7 10 11 12 15 16 20 24 23

5 7 10 11 12 15 16 20 24 23

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

142

D. Implementation and Comparative Study

 We have the run the „C‟ code using the compiler “C

free” of SOS, bubble sort, selection sort and insertion

sort for the study of worst case running time of each

separately for same data set, following table shows the

running time taken by SOS, bubble sort, selection sort

and insertion sort.

Running time in milliseconds

Data Size SOS InsertionSort SelectionSort BubbleSort

1000 0.000 0.000 0.000 0.000

5000 0.078 0.078 0.140 0.156

10000 0.343 0.343 0.593 0.625

15000 0.750 0.765 1.328 1.421

20000 1.421 1.432 2.468 2.687

25000 2.187 2.203 3.843 4.187

30000 2.953 3.171 4.101 4.480

 Above table data shows that SOS and Insertion sort

are sorting the data of size 1000-10000 in same time,

while SOS sorts the data faster for data size 15000-

30000. With all different data sets SOS is faster than

selection sort and bubble sort. Above data is plotted in

graphical form shown below in figure 1.

Fig. 1: Running time vs. Data size

 We have compared the SOS with selection sort and

bubble sort on the basis of another parameter also that is

Number of swapping operations taking place to sort the

given data. Insertion sort is not the part of it as instead

of swapping, shifting operation is used in it.

Number of swapping operations in worst case

Data Size (n) SOS Selection sort Bubble sort

1000 500 499499 499500

5000 2500 12497499 12502500

10000 5000 49994999 50005000

15000 7500 112492499 112507500

20000 10000 199989999 20001000

25000 12500 312487499 312512500

30000 15000 449984999 450015000

Above data is plotted in graphical form shown below in

figure 2.

Fig. 2: Number of swapping operations vs. Data size

IV. DISCUSSION OF RESULTS

 In fact running time taken by any particular

program depends on processor and configuration of the

system. We have used “C free” compiler to observe

running time by including the header file „time.h‟.

Runing time is calculated by the statement run_time=

((t2-t1) / (double) CLOCKS_PER_SEC), where t1 and

t2 is the initial and ending run time respectively. We

have tested the SOS for worst case. Results show that

SOS and Insertion sort are sorting the data of size 1000-

10000 in same time, while SOS sorts the data faster for

data size 15000-30000. With all different data sets SOS

is faster than Insertion sort, selection sort and bubble

sort.

 There is huge difference in number of swapping

operations used for sorting same data set in worst case

by SOS, bubble sort, selection sort and Insertion. There

are much lesser swapping operations required for SOS

in comparison to bubble sort, selection sort. Insertion

sort uses shifting operation rather than swapping to sort

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

143

the given set of data. SOS uses only n\2 swapping

operations in the worst case.

V. CONCLUSION AND FUTURE WORK

 SOS has the unique concept to sort the data.

Concept of SOS is simple. It is more efficient for small

data set in comparison to insertion sort, selection sort

and bubble sort. SOS uses maximum n/2 swapping

operations to sort the given data of size „n‟. It places the

element at its correct position, i.e. position where that

element will be in sorted list, after one swapping

operation only. In future we intend to compare it with

other existing techniques by observing the running time

and number of comparison operations of each.

VI. REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein (2003)."Introduction to Algorithms",

MIT Press, Cambridge, MA, 2
nd

 edition.

[2] Alfred V, Aho J, Horroroft, Jeffrey DU (2002).

Data Structures and Algorithms (India: Pearson

Education Asia).

[3] Seymour Lipschutz (2009), “Data Structure with

C”, Schaum Series, Tata McGraw-Hill Education.

[4] Brejov´a, B. (2001), „Analyzing variants of Shell

Sort‟, Information Processing Letters 79(5), 223–

227.

[5] Lafore, R. (2002), Data Structures and

Algorithms in Java, 2nd edn, SAMS Publishing,

Indianapolis, Indiana, USA.

[6] Robert S (1998). Algorithms in C. Addison-

Wesley Publishing Company, Inc.

[7] Knuth E., The Art of Computer Programming

Sorting and Searching, Addison Wesley, 1998.



