

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

31

A Single Model for Event-Driven Software

Om Kumar C.U., P. Bhargavi & Vinod Kumar. K

Dept. of CSE, Sree Vidyanikethan Engineering college

Rangampet, A.P 517102, India

Abstract - A widely used class of software that takes

sequence of events as inputs changes state and output’s

new event sequences are called as Event Driven Software

(EDS). An event is an incident that is inconsistent, with the

ordinary course or expected outcomes. EDS are very

diverse such as GUI, Web applications and Embedded

Software. We Confine to the first two types of EDS in this

paper.GUI is a type of User Interface which allows people

to interact by using graphical icon, visual indicators or

special graphic elements called “Widgets” along with text

labels or text navigations. Web Applications is an

application that is accessed over a network such as internet

or intranet. All the research work extensively made on

GUI & Web application till date is good enough but is

disjoint. We overcome it by finding a similarity called

parameter values. This paper provides a Single Model by

using Test Prioritization Strategies that is generic enough

to study develop and test a unified theory for all kinds of

Event Driven Software..

I. INTRODUCTION

 Event Driven software are becoming global (from

Desktop-GUI chatting to video conferencing-web

App).Event Driven Software are classified into

Graphical User Interface, Web Application, Embedded

Software. These are software’s that change state based

on incoming events. An Event is a software message

indicating that something has happened, such as a Key

press or mouse click. An event is an action which is

initiated outside the scope of the program but is handled

by code snippets inside the program. Events are handled

by Event handlers which are in synch with the program

flow. Examples of Events are user pressing a key on

the keyboard, selections through mouse etc. Another

source is a hardware device such as a timer. Event

Driven Softwares are nothing but interactive computer

programme that responds to Events by changing its

behaviour. Event Driven Softwares changes its state by

taking in sequence of events and producing new event

sequences. So testing Event Driven software’s for its

correctness is defiant. Since a user can invoke huge

number of possible event sequences through a User

Interface, tracking and testing it is fractious. The

contributions till date made on testing these 2 subclasses

of EDS show that they behave similarly [2][3][4].

Despite the above similarities of GUI and Web

applications, all the efforts to address their common

testing problems have been made separately due to two

reasons. First is the absence of a Generic model that

captures the event driven nature of the application. This

has prevented the development of a shared testing

technique that can test any class of EDS. Second is the

unavailability of subject application (Web & GUI

Together) and tool for researches. This paper provides

the first single model that is generic enough to develop

study and test GUI and web applications together.

The specific contributions of this work include: the first

Single model for testing stand-alone GUI and Web-

based applications, a shared prioritization function, and

prioritization criteria’s. We validate the correctness of

the model through a tool.

II. RELATED WORK

A. User Session Based Testing:

 An uninterrupted period of time is called a session.

Session based Testing aims to provide accountability by

creating on the fly a test design and does managing,

controlling and metrics reporting. Session-based testing

can be used to introduce measurement and control to an

immature test process, and can form a foundation for

significant improvements in productivity and error

detection. Session-based testing can be used when

formal requirements are not present, incomplete, or

changing rapidly [8][12]. User Session to Test Case

transformation (USTCT), transforms each individual

user session into a test case. Given m user sessions, U1

U2 U3…… Um, with user session Ui consisting of n

requests r1, r2, r3……. rn , where each ri consists of url

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

32

[name − value], the test case corresponding to Ui is

generated by formatting each of the requests, from r 1to

rn , into an http request that can be sent to a web server.

The resulting test suite contains m test cases, one for

each user session Ui.

B. GUI Test case Prioritization:

 A User interacts with a GUI by invoking

operations. All these operations are recorded for testing.

But testing all the events by tracking and recording is

infeasible.

 A feasible approach would be by testing a GUI

based on the User Interaction. All the interactions made

by the user are considered as test cases [12]. A

prioritization value is given to a test case based on its

interaction. A next test case is prioritized in such way

that it shouldn’t contain the interactions of the previous

test case.

Example:

 A File opened and read is given PV 1 based on the

action performed. The same File when open again that

test case is value is reduced to PV 0.5.The same File

when opened again, edited and saved is prioritized as

PV 1.2.

C. Model Based Testing:

 Model Based Testing is an abstraction or

simplification of the behaviour of the application to be

tested. A Model is recorded in machine readable format

for test generation purpose.

Fig. 1 Model Based Testing

Model based testing can be done in 2 ways [2].

1. On-the-fly

2. Off-line execution.

 Typically off-line execution requires the oracle

aspect as the test sequences generated through and

retained by the model for future execution need to be

paired with predictions or estimates of the expected

results. A technique to compare the actual application

response to the model predicted response needs to

coordinate the recording of actual results and the

evaluation against the predicted results. A process is

required to compare the actual result and evaluate it

against the predicted results.

An improvement to this general approach to model

based testing is the on-the-fly execution of Model Based

Test [12]. In this mode the model generates the test

sequences (traces) whilst dynamically interacting with

the application under test (AUT) – this in a way mimics

user interaction with the AUT. The on-the-fly execution

process compares the response with the expectation

model dynamically.

III. COMBINATORIAL MODEL

 This paper discusses on proposing a combined

model that would develop and test both GUI and Web

Application. GUI application generally uses event

listeners (event handlers) to catch the event caused by

the user. For Ex: Scrolling mouse, drag and drop,

clicking etc .To all these events explicit event handlers

are used that keep listening to these events to occur.. A

Web application sometimes listens to action in client

side (In Registration form-11 digits are not allowed in

mobile number parameter) and sometimes the data is

carried to server for testing. They are done using

GET/POST method.(In Registration form-availability of

user name). All the research till date shows that the tools

used for developing and testing these two kinds of EDS

have been disjoint. Some of the open and proprietary

testing tools available are listed below.

 Consider the below example where a Find and

Replace editor (Desktop app) and a login form (web

App) are considered for testing to perform combinatorial

testing.

Fig.2 Example of GUI & Web Application

 Combinatorial testing can be performed by

selecting a field common in both GUI & web-based

application. The field that is in common to the above

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

33

example is parameter value which is a combination of

parameter name and parameter value

Table I : Parameter values of Example

S.NO Desktop Application Web Application

1. <”Find what”, drop box,

SetText>

<Username

TextField, xxx>

2. <”Find what”, drop box

,Left Click>

<Password

TextField, xxx>

3. <”Replace with”, drop

box ,Set Text>

<Keep Me

LoggedIn, Check

Box, Leftclick

Select>

4. <”Replace with”, drop

box, Left Click>

<Keep Me

LoggedIn, Check

Box, Leftclick

UnSelect>

5. <Match case”, Check

box, Left click Select>

<login Buton,

Leftclick>

6. <Match case”, Check

box, Left click

Unselect>

<Form Action,

Login>

7. <”Multiline”, Check

box, Left click Select>

<Form name,

Login>

8. <”Multiline”, Check

box,Left click Unselect>

9. <”Find”, Button, Left

Click>

10. <”Close” Button, Left

Click>

IV. PRIORITIZED MODEL

 This model proposes a prioritized solution that

produces a sorted sequence of test cases. This model

helps in executing the test cases with and without

priority. Initially the model executes the test cases

without priority and records the values in its database.

At times the sorted sequence in the DB may contain 2 or

more test cases that have same value. Here to overcome

this situation we opt prioritization model.

 There are some test cases which end up with same

priority. So in that case we need to prioritize those test

cases with some other priorities. They are as follows.

1. Customer Requirement Based Priority.

2. Cost criterion.

3. Coverage Criterion.

4. History of Test cases.

5. Fault based Criterion.

By using all the above mentioned criteria’s a test case

will be prioritized. But to get better results we compare

our prioritization function with

1. No prioritization.

2. Random prioritization.

3. Optimal Prioritization.(Proposed Technique)

When test cases with equal priority come into picture

various criteria’s are considered for prioritizing these

test cases as shown above. They produce a sorted

sequence of test cases.

Prioritization Function:

 This function takes in a sequence of test cases

prioritizes it and produces a sequence of prioritized test

cases. We use this function to prioritize the test cases of

GUI as well as Web Application. The Function requires

4 parameters.

1. A Test Suite (TS) which needs to be sorted.

2. A function (f) which takes in input as a single test

case prioritizes it based on prioritization criteria’s and

produces prioritized test case f(x).

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

34

3. A function (F) which takes in input a test suite and

produces a prioritized test suite F(X).

4. An operation (#) to assign “fitness” value to test

cases. They can be “cardinality”, “Set Difference”.

Algorithm:

Input Parameters:

 TS: Test suite for prioritization.

 f: For prioritizing a Test Case.

 F: For prioritizing a Test Suite.

 #: A “fitness” value on Test Case.

Output:

 $: Sorted Suite.

Mechanism:

 Stack ← Empty

 TS ← Test Suite

 T ← Test case

 REPEAT

 T ← Next Best Test Case (TS, T, f, F, #)

 Stack ← Insert At End (Stack, T)

 TS ← TS-T;

 UNTIL (TS==0)

 $ ← Stack.

IV EXPERIMENTAL ANALYSIS

 We have developed a tool that can test GUI and

web application for its correctness. Fig.5 shows a test

suite which includes test cases from both GUI & web

application. TId 1 is a window from desktop application.

TId 2 and TId 3 are pages from web-based application.

The test suite containing test cases from both desktop

and GUI application are given as input to the tool.

 The tool prioritizes test cases in test suite by

assigning a maximum priority value 5 initially to it.

Whenever the same test cases are again considered for

testing the tool reduces the prioritization value of the

test case. A threshold value is maintained beyond which

a test case is never considered for testing.(For example a

test case when tested 3 times the tool records its

redundancy as 3 and reduces the prioritization value

from 5 to 2. The threshold limit of that particular test

case is around 60% .When it further decreases the test

case is decreased by 1 and is not considered for testing.

Thus the time and cost of testing is reduced).The tool

imports major classes from the test cases loaded. Those

classes in turn list methods available for testing. By

using JUnit the test cases can automatically tested for its

correctness. It also provides methods explicitly for

testing in which user can write his method for testing.

Fig.4 Test Suite Prioritization

 The tool uses JWebunit for web application testing.

A class is created with methods prepare() and

testLogin().web application testing is performed in

testLogin method where web login testing happens

automatically. If the username is test and password is

test123 then the test reports success and records it.

Similarly GUI testing can be performed and its result

can be recorded for prioritization

Fig.5 Test Suite testing

Web Application Testing

Fig. 6 Web Application Testing

 The above snapshot is about web application

testing. The UserId used in a web application when

entered correctly Logins the account. But when entered

wrongly doesn’t allow the user to login.

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

35

Sample Code:

Package testprioritizations.web;

import org.junit.*;

import static net.sourceforge.jwebunit.junit.JwebUnit.*;

public class TestWeb

{

 public static void main(String[] args)

 {

 String baseurl=”http://localhost:9999/jspsite”;

 String beginat=”/home.jsp”;

 String click=”Login”;

 String paramnames[]={“txtUserId”,”txtPsw”};

 String paramvalues[]={“test”,”test123”};

 String expResponse=”Welcome, test!”;

 ExampleWebTestCase t=new ExampleWebTestCase();

 t.prepare(baseurl);

t.test(beginat,click,paramnames,paramvalues,expRespon

se)

 }

}

class ExampleWebTestCase

{

 Before

 public void prepare(String url)

 {

 setBaseUrl(url);

 }

 Test public void test(String beginat,String

click,String[] pnames,String[] pvalues,String

expResponce)

 {

int success=0;

int failed=0;

 try

{

 beginAt(“/home.jsp”);

 clickLink(“Login”);

 assertTitleEquals(“Login”);

 setTextField(“txtUserId”, “1”);

 setTextField(“txtPsw”, “ram”);

 submit();

 assertTitleEquals(“Welcome, test!”);

 System.out.println(“\n\n success \n\n\n”);

}

catch(Exception ex)

{

failed++;

}

 }

}

Fig. 7 Web application Negative Test case

 The test case showing the negative flow is shown in

fig.7.

GUI Testing

 The below snapshot shows the execution time of

test cases through startTest and endTest. About 3

different set and get methods are tested such as setSno,

getSno, setFno, getFno, setResult, getResult. The time

taken by each method is shown in milliseconds.

Roughly it took around 20 milliseconds.

 International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print) : 2319 – 2526, Volume-2, Issue-2, 2013

36

Fig. 8 GUI Testing

V CONCLUSION & FUTURE WORK

 Research till date treats GUI & Web-based

applications as different entities of research. This paper

shows similarities that allow us to create a Single model

for testing Event Driven Software. Within the context of

our Model we propose prioritization function to

prioritize test cases using prioritization criteria’s. We

also introduce a method to prioritize multiple test cases

with equal priority. The prioritization function and

prioritization criteria’s when used together in our

combined model, depicts the usefulness of two kinds of

Event Driven Software’s for the problem of test

prioritization.

 Prioritization generally requires a large set of values

to produce efficient output. The Future work would be

to develop a Generic Model for all kinds of Event

Driven Software’s by using a minimal set test

prioritization.

VI. REFERENCES

[1] Steffen Herbold, Jens Grabowski, Stephan

Waack, “A Model for Usage-based Testing of

Event-driven Software”, 5
th

 International

Conference on Secure Software Integration &

reliability, 2011, pp.172-178.

[2] Mark Utting, Alexander Pretschner and Bruno

Legeard, “A Taxonomy Of Model Based

Testing”, Working paper by Waikato, April

2006,pp.1-17.

[3] DING Xiao-Ling, DING Chun, Hou Yong hong,

“An Approach To Event-Driven Software

Testing”, Vol .8.No-4 2002, pp.265-268.

[4] Renee C.Bryce, Atif M.Memon, “Test suite

Prioritization By Interaction Coverage”,

Workshop on Domain specific Software Test

automation in Conjunction with the 6
th

ESEC/FSE Joint Meeting, 2007, pp.1-7.

[5] Gregg Rothermel , Roland H. Untch, Chengyun

Chu, Mary Jean Harrold, “Test Case

Prioritization: An Empirical Study” , Proc. of the

International Conference on Software

Maintenance, UK, September, 1999, pp.1-10.

[6] Shashank Joshi, Shital Pawar, “Agent Based

Testing Tool For Event Driven Software”,

International Journal of Engineering Research

and Applications, Vol.2, Issue 3, May-Jun 2012,

pp.2961-2965.

[7] Shashank Joshi, Shital Pawar, “Developing A

Testing Tool For Testing both GUI and A Web

Applications Together”, International Journal of

Advances in Engineering & Technology, May

2012, pp.391-394.

[8] Siripong Roongruangsuwan, Jirapun Daengdej,

“Test Case Prioritization Techniques”, Journal of

Theoretical and Applied Information

Technology, 2010, pp.45-60.

[9] Praveen Ranjan Srivastava, “Test Case

Prioritization”, Journal of Theoretical and

Applied Information Technology, 2008, pp.178-

181.

[10] P. Dileep Kumar Reddy & A. Ananda Rao, “An

Empirical Analysis of Single Model Test

Prioritization Strategies for Event Driven

Software”, International Conference on

Computer Science,2010, pp.185-188.

[11] J.Praveen Kumar ,Manas Kumar Yogi, ”A

Survey on Models and Test strategies for Event-

Driven Software”, International Journal Of

Computational Engineering Research Vol. 2

Issue. 4 2012, pp.1087-1091.

[12] Hani Achkar, “Model Based Testing Of Web

Applications”, Stanz Sydney Australia,2008,

pp.1-28.

[13] Anneliese A. Andrews, Jeff out, Roger T.

Alexander, “Testing Web Applications by

Modeling with FSMs”, pp.1-28.

[14] Atif M.Memon, ”Developing Testing Techniques

for Event-driven Pervasive Computing

Applications”, International Conference On

Testing Techniques,2009,pp.1-10.



