A Single Model for Event-Driven Software

Om Kumar C.U., P. Bhargavi & Vinod Kumar. K

Dept. of CSE, Sree Vidyanikethan Engineering college
Rangampet, A.P 517102, India

Abstract - A widely used class of software that takes
sequence of events as inputs changes state and output’s
new event sequences are called as Event Driven Software
(EDS). An event is an incident that is inconsistent, with the
ordinary course or expected outcomes. EDS are very
diverse such as GUI, Web applications and Embedded
Software. We Confine to the first two types of EDS in this
paper.GUI is a type of User Interface which allows people
to interact by using graphical icon, visual indicators or
special graphic elements called “Widgets” along with text
labels or text navigations. Web Applications is an
application that is accessed over a network such as internet
or intranet. All the research work extensively made on
GUI & Web application till date is good enough but is
disjoint. We overcome it by finding a similarity called
parameter values. This paper provides a Single Model by
using Test Prioritization Strategies that is generic enough
to study develop and test a unified theory for all kinds of
Event Driven Software..

I. INTRODUCTION

Event Driven software are becoming global (from
Desktop-GUI chatting to video conferencing-web
App).Event Driven Software are classified into
Graphical User Interface, Web Application, Embedded
Software. These are software’s that change state based
on incoming events. An Event is a software message
indicating that something has happened, such as a Key
press or mouse click. Aneventis an action which is
initiated outside the scope of the program but is handled
by code snippets inside the program. Events are handled
by Event handlers which are in synch with the program
flow. Examples of Events are user pressing a key on
the keyboard, selections through mouse etc. Another
source is a hardware device such as a timer. Event
Driven Softwares are nothing but interactive computer
programme that responds to Events by changing its
behaviour. Event Driven Softwares changes its state by
taking in sequence of events and producing new event
sequences. So testing Event Driven software’s for its

correctness is defiant. Since a user can invoke huge
number of possible event sequences through a User
Interface, tracking and testing it is fractious. The
contributions till date made on testing these 2 subclasses
of EDS show that they behave similarly [2][3][4].
Despite the above similarities of GUI and Web
applications, all the efforts to address their common
testing problems have been made separately due to two
reasons. First is the absence of a Generic model that
captures the event driven nature of the application. This
has prevented the development of a shared testing
technique that can test any class of EDS. Second is the
unavailability of subject application (Web & GUI
Together) and tool for researches. This paper provides
the first single model that is generic enough to develop
study and test GUI and web applications together.

The specific contributions of this work include: the first
Single model for testing stand-alone GUI and Web-
based applications, a shared prioritization function, and
prioritization criteria’s. We validate the correctness of
the model through a tool.

Il. RELATED WORK
A. User Session Based Testing:

An uninterrupted period of time is called a session.
Session based Testing aims to provide accountability by
creating on the fly a test design and does managing,
controlling and metrics reporting. Session-based testing
can be used to introduce measurement and control to an
immature test process, and can form a foundation for
significant improvements in productivity and error
detection. Session-based testing can be used when
formal requirements are not present, incomplete, or
changing rapidly [8][12]. User Session to Test Case
transformation (USTCT), transforms each individual
user session into a test case. Given m user sessions, U;
U.,, with user session U; consisting of n
r, , where each r; consists of url

31

ISSN (Print) : 2319 — 2526, Volume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

[name — value], the test case corresponding to U; is
generated by formatting each of the requests, from r ;to
r,, into an http request that can be sent to a web server.
The resulting test suite contains m test cases, one for
each user session Ui.

B. GUI Test case Prioritization:

A User interacts with a GUI by invoking
operations. All these operations are recorded for testing.
But testing all the events by tracking and recording is
infeasible.

A feasible approach would be by testing a GUI
based on the User Interaction. All the interactions made
by the user are considered as test cases [12]. A
prioritization value is given to a test case based on its
interaction. A next test case is prioritized in such way
that it shouldn’t contain the interactions of the previous
test case.

Example:

A File opened and read is given PV 1 based on the
action performed. The same File when open again that
test case is value is reduced to PV 0.5.The same File
when opened again, edited and saved is prioritized as
PV 1.2

C. Model Based Testing:

Model Based Testing is an abstraction or
simplification of the behaviour of the application to be
tested. A Model is recorded in machine readable format
for test generation purpose.

Model

are dermved
can pe nin
from

Abstract tests

15 a partial descoption of

B
im
£

Executable tests |

| are sbatract ‘.'-*E]IIJIJ'S of

Fig. 1 Model Based Testing

Model based testing can be done in 2 ways [2].
1. On-the-fly
2. Off-line execution.

Typically off-line execution requires the oracle
aspect as the test sequences generated through and
retained by the model for future execution need to be
paired with predictions or estimates of the expected
results. A technique to compare the actual application
response to the model predicted response needs to
coordinate the recording of actual results and the

evaluation against the predicted results. A process is
required to compare the actual result and evaluate it
against the predicted results.

An improvement to this general approach to model
based testing is the on-the-fly execution of Model Based
Test [12]. In this mode the model generates the test
sequences (traces) whilst dynamically interacting with
the application under test (AUT) — this in a way mimics
user interaction with the AUT. The on-the-fly execution
process compares the response with the expectation
model dynamically.

I11. COMBINATORIAL MODEL

This paper discusses on proposing a combined
model that would develop and test both GUI and Web
Application. GUI application generally uses event
listeners (event handlers) to catch the event caused by
the user. For Ex: Scrolling mouse, drag and drop,
clicking etc .To all these events explicit event handlers
are used that keep listening to these events to occur.. A
Web application sometimes listens to action in client
side (In Registration form-11 digits are not allowed in
mobile number parameter) and sometimes the data is
carried to server for testing. They are done using
GET/POST method.(In Registration form-availability of
user name). All the research till date shows that the tools
used for developing and testing these two kinds of EDS
have been disjoint. Some of the open and proprietary
testing tools available are listed below.

Consider the below example where a Find and
Replace editor (Desktop app) and a login form (web
App) are considered for testing to perform combinatorial
testing.

Regh Findand Replace
fy R | 0
Fuat | k|
] F
Witin: [sheet | V Mathase
Search: - (By Cohus v/ I e mce :

e W ™ Only replace frstmatchin cel
e | nowe | b [[enee | e |

Fig.2 Example of GUI & Web Application

Combinatorial testing can be performed by
selecting a field common in both GUI & web-based
application. The field that is in common to the above

32

ISSN (Print) : 2319 — 2526, Volume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

example is parameter value which is a combination of
parameter name and parameter value

Table | : Parameter values of Example

S.NO | Desktop Application Web Application
1. <”Find what”, drop box, | <Username
SetText> TextField, xxx>
2. <”Find what”, drop box | <Password
,Left Click> TextField, xxx>
3. <”Replace with”, drop <Keep Me
box ,Set Text> LoggedIn, Check
Box, Leftclick
Select>
4, <”Replace with”, drop <Keep Me
box, Left Click> LoggedIn, Check
Box, Leftclick
UnSelect>
5. <Match case”, Check <login Buton,
box, Left click Select> Leftclick>
6. <Match case”, Check <Form Action,
box, Left click Login>
Unselect>
7. <”Multiline”, Check <Form name,
box, Left click Select> Login>
8. <”Multiline”, Check
box,Left click Unselect>
9. <”Find”, Button, Left
Click>
10. <”Close” Button, Left
Click>
IV. PRIORITIZED MODEL
This model proposes a prioritized solution that
produces a sorted sequence of test cases. This model
helps in executing the test cases with and without

priority. Initially the model executes the test cases
without priority and records the values in its database.
At times the sorted sequence in the DB may contain 2 or
more test cases that have same value. Here to overcome
this situation we opt prioritization model.

There are some test cases which end up with same
priority. So in that case we need to prioritize those test
cases with some other priorities. They are as follows.

1. Customer Requirement Based Priority.
2. Cost criterion.

3. Coverage Criterion.

4. History of Test cases.
5. Fault based Criterion.

By using all the above mentioned criteria’s a test case
will be prioritized. But to get better results we compare
our prioritization function with

1. No prioritization.
2. Random prioritization.

3. Optimal Prioritization.(Proposed Technique)

Tast cass Implemanter Intarprater takes in Input as Tast casa Tast Suite

!

| Customer basad Priogity |

:

| Tast Casz Exacutor |

v

Prioritization Criteria’s

Customer Raguirsment

Coverazs

A 4
Sorted Sequence of Test cases

When test cases with equal priority come into picture
various criteria’s are considered for prioritizing these
test cases as shown above. They produce a sorted
sequence of test cases.

Prioritization Function:

This function takes in a sequence of test cases
prioritizes it and produces a sequence of prioritized test
cases. We use this function to prioritize the test cases of
GUI as well as Web Application. The Function requires
4 parameters.

1. A Test Suite (TS) which needs to be sorted.

2. A function (f) which takes in input as a single test
case prioritizes it based on prioritization criteria’s and
produces prioritized test case f(x).

33

ISSN (Print) : 2319 — 2526, Volume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

3. A function (F) which takes in input a test suite and
produces a prioritized test suite F(X).

4. An operation (#) to assign “fitness” value to test
cases. They can be “cardinality”, “Set Difference”.

Algorithm:
Input Parameters:
TS: Test suite for prioritization.
f: For prioritizing a Test Case.
F: For prioritizing a Test Suite.
#: A “fitness” value on Test Case.
Output:
$: Sorted Suite.
Mechanism:
Stack «— Empty
TS « Test Suite
T « Test case
REPEAT
T < Next Best Test Case (TS, T, f, F, #)
Stack < Insert At End (Stack, T)
TS « TS-T;
UNTIL (TS==0)
$ «— Stack.

IV EXPERIMENTAL ANALYSIS

We have developed a tool that can test GUI and
web application for its correctness. Fig.5 shows a test
suite which includes test cases from both GUI & web
application. TId 1 is a window from desktop application.
Tld 2 and TId 3 are pages from web-based application.
The test suite containing test cases from both desktop
and GUI application are given as input to the tool.

The tool prioritizes test cases in test suite by
assigning a maximum priority value 5 initially to it.
Whenever the same test cases are again considered for
testing the tool reduces the prioritization value of the
test case. A threshold value is maintained beyond which
a test case is never considered for testing.(For example a
test case when tested 3 times the tool records its
redundancy as 3 and reduces the prioritization value
from 5 to 2. The threshold limit of that particular test
case is around 60% .When it further decreases the test
case is decreased by 1 and is not considered for testing.
Thus the time and cost of testing is reduced).The tool
imports major classes from the test cases loaded. Those
classes in turn list methods available for testing. By

using JUnit the test cases can automatically tested for its
correctness. It also provides methods explicitly for
testing in which user can write his method for testing.

Prioritization
Tid W)) (PV) ®) (Pr)
Login UserID Iram [Submit 5
2 Login iPassword password_1 [Submit 5
4 Home [UserType Admin Request 4

Fig.4 Test Suite Prioritization

The tool uses JWebunit for web application testing.
A class is created with methods prepare() and
testLogin().web application testing is performed in
testLogin method where web login testing happens
automatically. If the username is test and password is
test123 then the test reports success and records it.
Similarly GUI testing can be performed and its result
can be recorded for prioritization

Fig.5 Test Suite testing
Web Application Testing

T Teapronast
e fat View

& @EEE *

Bl € hll«elallo
Fig. 6 Web Application Testing
The above snapshot is about web application
testing. The Userld used in a web application when

entered correctly Logins the account. But when entered
wrongly doesn’t allow the user to login.

34

ISSN (Print) : 2319 — 2526, Volume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

Sample Code:
Package testprioritizations.web;
import org.junit.*;

import static net.sourceforge.jwebunit.junit.JwebUnit.*;

public class TestWeb
{

public static void main(String[] args)

{

String baseurl="http://localhost:9999/jspsite”;

String beginat="/home.jsp”’;

String click="Login”;

String paramnames|[]={“txtUserld”, txtPsw”};

String paramvalues[]={"“test”, test123”};

String expResponse="Welcome, test!”;
ExampleWebTestCase t=new ExampleWebTestCase();

t.prepare(baseurl);
t.test(beginat,click,paramnames,paramvalues,expRespon
se)

class ExampleWebTestCase
{
Before
public void prepare(String url)
{
setBaseUrl(url);

}

Test public void test(String beginat,String
click,String[] pnames,String[] pvalues,String
expResponce)

{

int success=0;
int failed=0;
try

beginAt(“/home.jsp”);
clickLink(“Login™);
assertTitleEquals(“Login”);
setTextField(“txtUserld”, “17);
setTextField(“txtPsw”, “ram”);
submit();
assertTitleEquals(“Welcome, test!”);
System.out.println(‘“\n\n success \n\n\n”);

}

catch(Exception ex)

{

failed++;

}

}

10 TestPrioitization - NetBeans IDE 65

Nawigate Source Refactor Run Debug Profie Team Tacl: Window Help

File Ede
7 gl |

[[€[Zllw]alOl7]
Fig. 7 Web application Negative Test case

&y
©

The test case showing the negative flow is shown in
fig.7.

GUI Testing

The below snapshot shows the execution time of
test cases through startTest and endTest. About 3
different set and get methods are tested such as setSno,
getSno, setFno, getFno, setResult, getResult. The time
taken by each method is shown in milliseconds.
Roughly it took around 20 milliseconds.

35

ISSN (Print) : 2319 — 2526, Volume-2, Issue-2, 2013

International Journal on Advanced Computer Theory and Engineering (IJACTE)

B 1

ulll &1

Fig. 8 GUI Testing

s ol A

Cemi Al

V CONCLUSION & FUTURE WORK

Research till date treats GUI & Web-based
applications as different entities of research. This paper
shows similarities that allow us to create a Single model
for testing Event Driven Software. Within the context of
our Model we propose prioritization function to
prioritize test cases using prioritization criteria’s. We
also introduce a method to prioritize multiple test cases
with equal priority. The prioritization function and
prioritization criteria’s when used together in our
combined model, depicts the usefulness of two kinds of
Event Driven Software’s for the problem of test
prioritization.

Prioritization generally requires a large set of values
to produce efficient output. The Future work would be
to develop a Generic Model for all kinds of Event
Driven Software’s by using a minimal set test
prioritization.

VI. REFERENCES

Steffen Herbold, Jens Grabowski, Stephan
Waack, “A Model for Usage-based Testing of
Event-driven Software”, 5" International
Conference on Secure Software Integration &
reliability, 2011, pp.172-178.

[1]

[2] Mark Utting, Alexander Pretschner and Bruno
Legeard, “A Taxonomy Of Model Based
Testing”, Working paper by Waikato, April

2006,pp.1-17.

DING Xiao-Ling, DING Chun, Hou Yong hong,
“An Approach To Event-Driven Software
Testing”, Vol .8.No-4 2002, pp.265-268.

[3]

[4]

(5]

6]

[7]

8]

[0]

[10]

[11]

[12]

[13]

[14]

Renee C.Bryce, Atif M.Memon, “Test suite
Prioritization = By Interaction = Coverage”,
Workshop on Domain specific Software Test
automation in Conjunction with the 6"
ESEC/FSE Joint Meeting, 2007, pp.1-7.

Gregg Rothermel , Roland H. Untch, Chengyun
Chu, Mary Jean Harrold, “Test Case
Prioritization: An Empirical Study” , Proc. of the
International Conference on Software
Maintenance, UK, September, 1999, pp.1-10.

Shashank Joshi, Shital Pawar, “Agent Based
Testing Tool For Event Driven Software”,
International Journal of Engineering Research
and Applications, Vol.2, Issue 3, May-Jun 2012,
pp.2961-2965.

Shashank Joshi, Shital Pawar, “Developing A
Testing Tool For Testing both GUI and A Web
Applications Together”, International Journal of
Advances in Engineering & Technology, May
2012, pp.391-394.

Siripong Roongruangsuwan, Jirapun Daengdej,
“Test Case Prioritization Techniques”, Journal of

Theoretical and Applied Information
Technology, 2010, pp.45-60.

Praveen Ranjan Srivastava, “Test Case
Prioritization”, Journal of Theoretical and

Applied Information Technology, 2008, pp.178-
181.

P. Dileep Kumar Reddy & A. Ananda Rao, “An
Empirical Analysis of Single Model Test
Prioritization Strategies for Event Driven
Software”, International Conference on
Computer Science,2010, pp.185-188.

J.Praveen Kumar ,Manas Kumar Yogi, "A
Survey on Models and Test strategies for Event-
Driven Software”, International Journal Of
Computational Engineering Research Vol. 2
Issue. 4 2012, pp.1087-1091.

Hani Achkar, “Model Based Testing Of Web
Applications”, Stanz Sydney Australia,2008,

pp.1-28.
Anneliese A. Andrews, Jeff out, Roger T.
Alexander, “Testing Web Applications by

Modeling with FSMs”, pp.1-28.

Atif M.Memon, ”Developing Testing Techniques
for Event-driven Pervasive =~ Computing
Applications”, International Conference On
Testing Techniques,2009,pp.1-10.

SO@®

36

ISSN (Print) : 2319 — 2526, Volume-2, Issue-2, 2013

