
International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print): 2319-2526, Volume -3, Issue -2, 2014

 69

Examining Search-Based Algorithms in Software Testing

1
Sukhmanpreet Kaur,

2
Parminder Kaur

Department of Computer Science & Engineering, Guru Nanak Dev University, Amritsar, India

Email:
1
sukhmanpreetkaur41@ymail.com,

2
parminderkaur@yahoo.com

Abstract—Software testing is a way of improving software

quality. It is an essential and an expensive phase of Software

Development Life Cycle. There has been an ongoing

research in this field to automate the process of software

testing so that expenses can be reduced. But size and

complexity of software pose hindrance in their automation.

Meta-heuristic and evolutionary algorithms have proved to

be much useful for automating the process of test

generation. Usages of meta-heuristic approaches have led to

the emergence of new field in software engineering. This

field is known as Search-Based Software Engineering

(SBSE). SBSE is applicable to wide range of software

engineering problems. Application of these approaches to

software testing has come to be known as Search-Based

Software Testing. This paper examines several

search-based algorithms. These algorithms are compared to

one another on the basis of various parameters taken into

consideration. All of these algorithms are strongly

dependent on problem domain as heuristics related to that

domain are very much essential for carrying out execution

of the problem using desired algorithm.

Index Terms—Software Testing, Search-Based Software

Engineering, Search-Based Software Testing, Genetic

Algorithms

I. INTRODUCTION

Software testing is the process of evaluating the quality of

the developed software by finding as many faults as

possible. It is an important phase of software

development lifecycle which alone accounts for 40% to

50% of software development cost and this cost may vary

with size and other parameters related to the chosen

project. Automated testing is essential for modern

complex software systems as the cost of manual testing is

very high. From the last few decades, there have been

constant attempts to reduce the time and efforts required

for software testing by automating the process of

software test data generation.

The last decade has witnessed much research in applying

search-based optimization methods to this problem. This

area of search is known Search-Based Software Testing

(SBST). This is an instance of Search-Based Software

Engineering (SBSE). This term was given by Harman

and Jones in 2001. SBSE consists of the use of search

based optimization algorithms such as hill climbing,

simulated annealing, and genetic algorithms being the

most commonly used in the field of software engineering.

These search algorithms are attractive in software

engineering due to the reason that data are often

inaccurate, incomplete and dispersed over larger area

which makes traditional optimization techniques

incompatible with the given data. SBST deals with a

testing task by automating it with the help of

meta-heuristic algorithms. Wide range of algorithms can

be used for this purpose. All these algorithms are

dependent on problem domain. No matter which

algorithm is used, it is the fitness function that guides the

search and captures the crucial information and

differentiates a good solution from a poor one.

II. LITERATURE SURVEY

Search-Based Software Engineering

This field has gained much popularity in the last decade.

It involves the use of search based optimization

techniques for various software engineering activities

during the lifecycle of software, such as project planning,

cost estimation [1,2,3,11 ,15], requirement engineering

[4], testing [5,6,7,9,10,16,17,20,21,22], automated

maintenance [11,13,14,19,23,24,25], quality assessment

[8,18], etc. When problems in software engineering are

solved using search-based software engineering

techniques, they show improvements in results and

therefore this field has proved to be very much beneficial

for wide range of software engineering problems. The

search-based algorithms follow these basic steps:

 Search Initialization: The search is initiated by

randomly choosing solution from possible

candidate solutions.

 Quality Assessment: Assessing the quality of a

candidate solution by means of fitness function.

 Modify: Modifying the candidate solution by

making it slightly different.

 Select: Selecting the candidate solution on the basis

of fitness function in accordance with chosen

algorithm.

Categorizing search-based algorithms [28]:

International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print): 2319-2526, Volume -3, Issue -2, 2014

 70

 Local or Global search algorithms

 Single state or Population based algorithms

 Local and Global optimization algorithms: Local

search algorithms find local optima and need to

restart again from a different point in order to obtain

global optima whereas in case of global search

algorithms, local optima are avoided. There is a

trade-off between local and global search

algorithms. Global search algorithms have higher

efficiency but require greater cost and effort for

computation. Local search algorithms are more

effective for simple problems.

Table1. Local and Global Search Algorithms

 Single state or Population based algorithms:

Single state methods find one solution at a time whereas

in population based methods, many candidate solutions

are used at a time. Population based methods are based on

evolutionary algorithms. Therefore they need modify

step which involves mutation and recombination of fittest

parents to create even better children.

Table2. Single state or Population based Algorithms

Single State Methods Population State

Methods

Evaluate one candidate

solution at a time.

Evaluate many candidate

solutions at a time.

Process of neighborhood

evaluation is used here.

Process of crossover and

mutation are used here.

e.g. Hill Climbing,

Simulated Annealing

e.g. Genetic Algorithms

A. Search-Based Software Testing (SBST) [26, 27, 28]

Search-Based Software Testing has proved to be very

useful for software testing. It helps to automate a testing

problem. It involves the use of SBSE optimization

Algorithms [2, 3, 4, 1]. Here also fitness function plays a

very important role in finding solution to a problem. All

algorithms are problem dependent as heuristics based on

problem domain are used for evaluating the solution to a

problem. Algorithm to be used for a problem is

dependent on the type of problem taken into

consideration.

Generally there are two rudimentary requirements that

need to be fulfilled in order to apply search- based

optimization techniques to a testing problem.

 Representation: - The problem needs to be

represented so that it can be manipulated by the search

algorithm.

 Fitness Function: - The function for guiding the

search. It is problem specific. It is this function that

carries crucial information regarding the problem and

it helps to distinguish between good and poor

solution.

B. Search-Based Optimization Algorithms [6, 7, 8, 9,

10, 11, 12, 26, 27, 28]

Hill Climbing:

 It is one of the simplest search based optimization

algorithm. It is effective for simple problems. It is a local

search algorithm which starts from a randomly chosen

candidate solution. At each step, the neighbors of

candidate solution are evaluated for fitness. If a better

candidate solution is found, move is made to that

neighbor else it is discarded. This way the process is

continued till no fitter neighbor is left. Then the search is

terminated. If local optima are reached, then the same

process is restarted from a new randomly chosen point till

global optima are reached.

Simulated Annealing:

This algorithm is inspired from the chemical process of

annealing. Annealing refers to slow cooling of highly

heated material. The properties of cooled material depend

at the rate at which the cooling takes place. It is similar to

hill climbing in a way that neighbor is considered for

better fitness but it allows probabilistic moves to poorer

solutions to avoid local maxima. Initially when the

temperature is high, free movement around the search

space is allowed so that the search is less dependent on

the starting solution. As the search advances, the

temperature decreases and there is less freedom of

movement. If the cooling is too fast, enough search space

will not be explored and there are more chances of

obtaining local maxima.

Genetic Algorithms:

They are also known as evolutionary algorithms. They

are inspired from the evolutionary process of biology.

They are population based search algorithms that involve

the process of natural evolution (mutation and crossover)

for selecting the fittest individual. These algorithms have

immense applications in the field of search based

Local Search Algorithm Global Search Algorithm

Deals with simple

problems

Deals with complex

problems

Not very efficient Have higher efficiency

Require less effort and cost

for computation

Require greater cost and

effort for computation

Trade-Off between Local and Global

Algorithms

Efficiency Effectiveness

Based on

International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print): 2319-2526, Volume -3, Issue -2, 2014

 71

software testing. They involve natural process of

evolution. It starts with a random generation of initial

population. The individuals of the population are

represented by chromosomes and they are the encoded

solutions to a problem. These chromosomes again

undergo evolution on basis of certain rules, mutation and

reproduction. Evaluation of fitness for each individual

takes place. Again parents recombine to form new off

springs and the process continues until the solution to the

problem has been found or stopping condition is reached.

The stopping Condition may depend on available number

of resources or the maximum number of iterations.

Fig1.Flowchart for Hill Climbing Algorithm

Fig2. Flowchart for Genetic Algorithm

III. INFERENCE

The three meta-heuristic algorithms that have been used

in software testing are compared in this section. As we

know that the Search-Based-Software-Testing algorithms

are strongly dependent on the domain of the problem so

each algorithm has its own applications where they can

be used more efficiently. This paper has reviewed some

common search algorithms. The various algorithms that

have been reviewed are hill climbing, simulated

annealing, and genetic algorithms. In this section some

 Start

Choose random
solution in the
search space

Evaluate neighbors of
current solution for
fitness

If a better
candidate

solution found

Move to that
solution

No

If it is a
global

maxima

Yes

Goal state
is obtained

No

Restart

Yes

Yes

No

 Start

Random generation of
population (candidate
solutions) to a problem

Stopping
condition

reached?

Crossover the pair of
individuals at randomly
chosen point

Select a pair of individuals
from a current population

Calculate fitness function
of each individual of the
population

Replace current population
with new population

Mutate the new two
individuals

Goal state
is obtained

International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print): 2319-2526, Volume -3, Issue -2, 2014

 72

crucial parameters are taken into consideration and on the

basis of these parameters, an algorithm is chosen that can

be used in a given situation. The various parameters taken

into consideration are:

 Meta-heuristic approach

 domain specific

 local search approach

 global search approach

 search one point at a time

 fitness function used to guide search

 backtracking used to deal with local maxima

 neighborhood dependence

 principle of crossover, mutation used

 simplicity

Each algorithm is characterized by its special features. A

particular algorithm cannot be used in every situation.

One algorithm is chosen based on our requirements.

Requirement specifications while choosing an algorithm

is very important. So we can say that each algorithm has

its own advantages and disadvantages so the chosen

problem will define which algorithm will be appropriate

for a given problem (table 3, figure 3). Hill climbing is a

local search approach. On the other hand simulated

annealing and genetic algorithms are global search

algorithms, finding many solutions in the search space at

a given time. In each algorithm, fitness function is

essential as it helps in guiding the search.

IV. FUTURE CHALLENGES

Future Challenges for meta-heuristic Algorithms

C. Stopping Criteria [26, 27]:

To terminate search algorithms, certain stopping criterion

is required. Much of the previous work has adopted one

of the following two approaches to terminate the search.

 They are taken to be some time or budget

constraint on effort required for computation.

 It may act as a criterion that must be met by the

proposed solution.

But in case of evolutionary algorithms, there is a third

possibility i.e. the search is terminated when all the

individuals of a population become homogeneous. In this

case, when the individuals have similar chromosomes

there is very little chance of further improvements in

fitness. So, a question is raised that how can we measure

similarity among solutions. This is domain specific.

Therefore certain metrics are required that can help in

measuring the similarity of a set of candidate solutions

for wide range of software engineering problems. These

metrics need to be cost effective as they will be required

at regular intervals during the search.

D. Memetic Algorithms [26, 27]:

This is an algorithm that is used in SBST that combines

the features of other SBST algorithms such as hill

climbing, Simulated Annealing, genetic Algorithms.

Therefore it can be called hybrid technique in SBST. It

takes into consideration best aspects of local and global

search. A simple example of memetic algorithm can be of

a genetic algorithm that takes a stage of hill climbing at

the end of each generation to improve the quality of each

individual of the population to a certain extent. They are

best suited for problems with unpredictable landscape.

Applications of these techniques need to be investigated

in structural test data generation problem.

E. Fitness Landscape Visualization [26, 27,]:

It is used to visualize an optimization problem at hand by

means of distributing fitness values of the candidate

solutions in the search space. When each individual

occupies location on the horizontal plane, the landscape

is visualized by the use of fitness function values as a

measure of height in the landscape. Here the best solution

to a problem is represented by the highest point in the

landscape. The shape of the visualization landscape

affects the progress of the search. If the landscape is free

of local optima, the search will be quite easy. On the other

hand if search problem has a complex landscape

containing several optima then the search may be either

misled or offered little guidance. So fitness landscape

visualization helps to determine which search technique

will be best suited for the problem at hand.

Table3. Comparison among Meta-Heuristic Search

Algorithms

 ALGORITHMS

PARAMETERS

HILL

CLIMB

ING

SIMULA

TED

ANNEA

LING

GENETIC

ALGORIT

HM

Meta-heuristic

Approach

Domain specific
Local Search

Approach

Global Search

Approach

Search one solution

at a time

Fitness function
Simplicity
Neighborhood

Dependent

Principle of

mutation used

Backtracking used

to deal with local

maxima

International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print): 2319-2526, Volume -3, Issue -2, 2014

 73

V. CONCLUSIONS

As we all know that the cost of manual testing in practice

is very high, therefore research into automated software

testing is very generic approach in which solutions may

be sought for various software testing problems

automatically using optimization algorithms. This paper

has reviewed some common search based algorithms like

hill climbing, simulated annealing, and genetic

algorithms. Each of these algorithms has its own

advantages and disadvantages compared to other

algorithms. Hill Climbing algorithms are known as local

search approaches because they consider only one

solution at a time. This approach is simple but sometimes

inefficient and time consuming as they move only in the

local neighborhood of those solutions. They could not

escape from local optima in the search space of possible

input data. To overcome this problem backtracking to

some earlier solution is required. Simulated Annealing

Algorithms are similar to hill climbing in a way that they

consider one solution at a time and move in local

neighborhood of those solutions. However they allow

probabilistic moves to poorer solutions to avoid local

maxima. On the other hand Genetic Algorithms are a

form of global search, sampling many solutions at a time.

In the last two decades genetic algorithms have been

widely employed for various test data generation.

Fig3. Algorithms satisfying various parameters

REFERENCES

[1] J. Aguilar-Ruiz, I. Ramos, J. C. Riquelme, and M.

Toro.―An evolutionary approach to estimating

software development projects‖ Information and

Software Technology,43(14):875–882, Dec.

2001.

[2] G. Antoniol, M. Di Penta, and M. Harman. ―A

robust search–based approach to project

management in the presence of abandonment,

rework, error and uncertainty‖ In 10th

International Software Metrics Symposium

(METRICS 2004),pages 172–183, Los Alamitos,

California, USA, Sept. 2004.IEEE Computer

Society Press.

[3] G. Antoniol, M. D. Penta, and M. Harman.

―Search-based techniques applied to optimization

of project planning for amassive maintenance

project‖. In 21st IEEE International Conference

on Software Maintenance, pages 240–249,

LosAlamitos, California, USA, 2005. IEEE

Computer Society.

[4] A. Bagnall, V. Rayward-Smith, and I.

Whittley.‖The next release problem‖. Information

and Software Technology,43(14):883–890, Dec.

2001.

[5] A. Baresel, D. W. Binkley, M. Harman, and B.

Korel. Evolutionary testing in the presence of

loop–assigned flags: A testability transformation

approach. In International Symposium on

Software Testing and Analysis (ISSTA 2004),

pages108–118, Omni Parker House Hotel,

Boston, Massachusetts, July 2004. Appears in

Software Engineering Notes, Volume29, Number

4.

[6] A. Baresel, H. Sthamer, and M. Schmidt. Fitness

function design to improve evolutionary structural

testing. In GECCO 2002: Proceedings of the

Genetic and Evolutionary Computation

Conference, pages 1329–1336, San Fran- Future

of Software Engineering (FOSE'07)

0-7695-2829-5/07 $20.00 © 2007 cisco, CA

94104, USA, 9-13 July 2002.Morgan Kaufman

Publishers.

[7] L. Bottaci. Instrumenting programs with flag

variables for test data search by genetic

algorithms. In GECCO 2002: Proceedings of the

Genetic and Evolutionary Computation

Conference, pages 1337–1342, New York, 9-13

July 2002.

[8] S. Bouktif, H. Sahraoui, and G. Antoniol.

Simulated annealing for improving software

quality prediction. In GECCO2006: Proceedings

of the 8th annual conference on Genetic and

evolutionary computation, volume 2, pages

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M
ET

A
H

EU
R

IS
TI

C
 S

EA
R

C
H

D
O

M
A

IN
 S

P
EC

IF
IC

LO
C

A
L

SE
A

R
C

H
 A

P
P

R
O

A
C

H

G
LO

B
A

L
SE

A
R

C
H

 A
P

P
R

O
A

C
H

SE
A

R
C

H
 O

N
E

SO
LU

TI
O

N
 A

T
A

 T
IM

E

FI
TN

ES
S

FU
N

C
TI

O
N

 U
SE

D
 T

O
 G

U
ID

E
…

SI
M

P
LI

C
IT

Y

N
EI

G
H

B
O

R
H

O
O

D
 D

EP
EN

D
EN

T

P
R

IN
C

IP
LE

 O
F …

B
A

C
K

TR
A

C
IN

G
 U

SE
D

 T
O

 D
EA

L
W

IT
H

 …

GENETIC
ALGORITHM

SIMULATED
ANNEALING

HILL
CLIMBING

International Journal on Advanced Computer Theory and Engineering (IJACTE)

ISSN (Print): 2319-2526, Volume -3, Issue -2, 2014

 74

1893–1900,Seattle, Washington, USA, 8-12 July

2006. ACM Press.

[9] L. C. Briand, J. Feng, and Y. Labiche. Using

genetic algorithms and coupling measures to

devise optimal integration test orders. In SEKE,

pages 43–50, 2002.

[10] L. C. Briand, Y. Labiche, and M. Shousha. Stress

testingreal-time systems with genetic algorithms.

In Genetic Computation Conference, GECCO

2005, Proceedings, Washington DC, USA, June

25-29, 2005, pages1021–1028. ACM, 2005.

[11] C. J. Burgess and M. Lefley. Can genetic

programming improve software effort estimation?

A comparative evaluation. Information and

Software Technology, 43(14):863–873, Dec.

2001.

[12] D. Fatiregun, M. Harman, and R. Hierons.

Search-based amorphous slicing. In 12th

International Working Conference on Reverse

Engineering (WCRE 05), pages 3–12, Carnegie

Mellon University, Pittsburgh, Pennsylvania,

USA, Nov. 2005.

[13] M. Harman, R. Hierons, and M. Proctor. A new

representation and crossover operator for

search-based optimization of software

modularization. In GECCO 2002: Proceedings of

the Genetic and Evolutionary Computation

Conference, pages 1351–1358, San Francisco, CA

94104, USA, 9-13July 2002. Morgan Kaufmann

Publishers.

[14] B. S. Mitchell and S. Mancoridis. Using heuristic

search techniques to extract design abstractions

from source code. In GECCO 2002: Proceedings

of the Genetic and Evolutionary Computation

Conference, pages 1375–1382, San Francisco, CA

94104, USA, 9-13 July 2002. Morgan Kaufmann

Publishers.

[15] J. J. Dolado. A validation of the component-based

method for software size estimation. IEEE

Transactions on Software Engineering,

26(10):1006–1021, 2000.

[16] Q. Guo, R. M. Hierons, M. Harman, and K.

Derderian. Constructing multiple unique

input/output sequences using evolutionary

optimization techniques. IEE Proceedings —

Software,152(3):127–140, 2005.

[17] M. Harman, L. Hu, R. M. Hierons, J. Wegener, H.

Sthamer, A. Baresel, and M. Roper. Testability

transformation. IEEE Transactions on Software

Engineering, 30(1):3–16, Jan.2004.

[18] T. M. Khoshgoftaar, L. Yi, and N. Seliya. A multi

objective module-order model for software

quality enhancement. IEEE Transactions on

Evolutionary Computation, 8(6):593–608,

December 2004.

[19] B. S. Mitchell and S. Mancoridis. On the

automatic modularization of software systems

using the bunch tool. IEEE Transactions on

Software Engineering, 32(3):193–208, 2006.

[20] Z. Li,M. Harman, and R. Hierons. Meta-heuristic

search algorithms for regression test case

prioritization. IEEE Transactions on Software

Engineering, 2007, pages 225-237.

[21] P. McMinn, M. Harman, D. Binkley, and P.

Tonella. Thespecies per path approach to

search-based test data generation. In International

Symposium on Software Testing and Analysis

(ISSTA 06), pages 13–24, Portland, Maine,

USA,2006.

[22] J. Wegener, A. Baresel, and H. Sthamer.

Evolutionary test environment for automatic

structural testing. Information and Software

Technology Special Issue on Software

Engineering using Meta-heuristic Innovative

Algorithms,43(14):841–854, 2001.

[23] M. O’Keeffe and M. O’Cinneide. Search-based

software maintenance. In Conference on Software

Maintenance and Reengineering (CSMR’06),

pages 249–260, Mar. 2006.

[24] O. Seng, M. Bauer, M. Biehl, and G. Pache.

Search based improvement of subsystem

decompositions. In H.-G.Beyer and U.-M.

O’Reilly, editors, Genetic and Evolutionary

Computation Conference, GECCO 2005,

Proceedings, Washington DC, USA, June 25-29,

2005, pages 1045–1051.ACM, 2005.

[25] O. Seng, J. Stammel, and D. Burkhart.

Search-based determination of refactorings for

improving the class structure of object-oriented

systems. In GECCO 2006: Proceedings ofthe 8th

annual conference on Genetic and evolutionary

computation, volume 2, pages 1909–1916,

Seattle, Washington, USA, 8-12 July 2006. ACM

Press.

[26] Sapna Varshney, Dr. Monica Mehrotra ―Search

based Software Test Data Generation for

Structural Testing: A Perspective‖ ACM

SIGSOFT July 2013.

[27] Mark Harman, ―The Current State and Future of

Search Based Software Engineering‖ Future of

Software Engineering (FOSE'07) 2007.

[28] Phil McMinn, ―Search-Based Software Testing:

Past, Present and Future‖ University of

Sheffield, Department of Computer Science

Regent Court, 211 Portobello, and Sheffield, S1

4DP, UK

