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Abstract – Accurate estimation of parameters during 

transient and steady state is required for controlling of 

Induction motor. Artificial neural networks (ANNs) based 

online identification of induction motor parameters are 

presented. ANNs such as feed forward network is used to 

develop an ANN as a memory for remembering the 

estimated parameters and for computing the parameters 

during transients. Simulations and experimental results 

are presented for induction motors.  

Index Terms—Artificial neural networks (ANNs), Induction 

motor, Mutual inductance, Observer system, Parameter 

estimation 

 

I. INTRODUCTION 

 The Induction motor is a nonlinear multivariable 

dynamic system with parameters that vary with 

temperature, frequency, saturation, and operating point. 

Considering that induction motors are widely used in 

industrial applications, these parameters have a 

significant effect on the accuracy and efficiency of the 

motors and, ultimately, the overall system performance. 

Therefore, it is essential to develop algorithms for online 

parameter estimation of the induction motor. Such 

algorithms can be performed in real time because of the 

progress in the use of digital signal processors (DSPs) 

and microelectronics. In this paper ANN based 

parametric estimation method is developed. The 

Luenberger observer system is implemented for flux 

estimation, and the speed observer system is utilized for 

rotor-speed estimation. The rotor parameters are the 

most important parameters for the control of the 

induction motor drives. The rotor resistance can change 

up to 150% over the entire operation. A number of 

methods that are both for the detection of the rotor 

parameter and the prevention of its variation have been 

discussed.In the rotor parameter estimation is proposed 

by estimating the rotor temperature. This is based on the 

fact that the temperature influences the fundamental 

frequency component of the terminal voltage for a given 

input current. This is a tedious process because the 

temperature of the rotor windings has to be measured 

every time. Many published research papers have shown 

the effect of motor parameters on the quality of flux and 

speed estimation in vector control of rotation 

systems[3]. In this paper, the online identification of the 

rotor resistance and mutual inductance techniques based 

on ANN is presented. Artificial neural networks (ANNs) 

can be used to identify and control the nonlinear 

dynamic systems because they can approximate a wide 

range of nonlinear functions to any desired degree of 

accuracy. Moreover, they can be implemented in 

parallel and, therefore, shorter computational time can 

be achieved. In addition, they have immunity to 

harmonic ripples and have fault-tolerant capabilities. 

Since the 1990s, several investigations into the 

applications of neural networks in the field of electrical 

machines and power electronics have appeared. In 

recent years, the use of ANN in modulation systems, in 

breakdown detection, in control, in the estimation of 

state variables, and in the identification of induction-

motor parameters. The use of ANN has been tried for 

estimating the rotor angular speed. Among the methods 

used, it is possible to note two types of ANN designs. 

One is based on the machine model, and the other one 

uses stator currents and voltages for direct speed 

estimation. In the proposed solution, the neural networks 

are used to develop an associated system for 

remembering the calculated values and for computing 

these values during the transients. Therefore, this paper 

considers the online identification of machine 

parameters in a sensor less control system. 

II.  MATHEMATICAL MODEL AND NONLINEAR CONTROL 

SYSTEM OF INDUCTION MOTOR 

 The model of a squirrel-cage induction motor 

expressed as a set of differential equations for the stator-

current and rotor-flux vector components presented in a 

stationary coordinate system are as follows 
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𝑑𝑖𝑠𝑥

𝑑𝜏
 =  a1isx + a2Ψrx − a3ωrΨry + a4usx                      (1) 

𝑑𝑖s𝑦

𝑑𝜏
 = a1isy + a2Ψry − a3ωrΨrx + a4usy                      (2) 

𝑑Ψr𝑥

𝑑𝜏
 =   a5Ψrx − ωrΨry + a6isx                                  (3) 

𝑑Ψry

𝑑𝜏
=   a5Ψry + ωrΨrx + a6isy                                   (4) 

𝑑𝜔r

𝑑𝜏
=    Lm/ LrJ(Ψrxisy − Ψryisx) – (1/ J)𝑚𝑜                (5) 

where usx, usy, isx, isy, Ψrx, and Ψry are the stator-

voltage, the stator-current, and rotor-flux vector 

components in the stationary coordinate system xy, 

respectively. ωr is the angular speed of the rotor shaft, 

Lm is the mutual inductance, J is the moment of inertia, 

mo is the load torque, and, furthermore  

  𝑎1 = − 
𝑅𝑠𝐿𝑟

2  +Rr Lm
2  

Lr wσ
 

  𝑎2=   
𝑅𝑟𝐿𝑚

𝐿𝑟𝑤𝜎
 

  𝑎3= 
𝐿𝑚

𝑤𝜎
 

  𝑎4 = 
𝐿𝑟

𝑤𝜎
   

  𝑎5 = −  
𝑅𝑟

𝐿𝑟
    

  𝑎6 =  
𝑅𝑟𝐿𝑚

𝐿𝑟
    

 wσ =  𝐿𝑟  𝐿𝑠 - 𝐿2    

Rs, Rr, Ls, Lr, and Lm are the rotor and stator resistances 

and inductances, respectively. τ is the time in per unit 

(p.u.). 

III. FEEDBACK LINEARIZATION OF THE INDUCTION 

MOTOR FED BY VSIS 

   In induction-motor drives fed by voltage-source 

inverters (VSIs), the control signals are the voltage 

vector  components. Four novel state variables have 

been proposed to describe the motor model[6]. The new 

variables may be interpreted as the rotor angular speed, 

scalar and vector  

 x11 =ωr                                                (6)  

 x12 =Ψrxisy – Ψryis x                             (7) 

 x21 =Ψ
2
r x +Ψ

2
ry                                   (8) 

x22 =Ψrxisx +Ψryisy                           (9)  

After taking the differential equations for the new state 

Variables into account, the new model of the motor is 

obtained . 

𝑑𝑥11

𝑑𝑡
 = 

𝐿𝑚

𝐽𝐿𝑟
 𝑥12  - 

1

𝐽
𝑚𝑜                       (10) 

𝑑𝑥12

𝑑𝑡
= - 

1

𝑇𝑣
 𝑥12  - 𝑥11   𝑥12 + 

𝐿𝑚

𝑤𝛿
 + 

𝐿𝑟

𝑤𝛿
𝑢1    (11) 

𝑑𝑥21

𝑑𝑡
  = -2 

𝑅𝑟

𝐿𝑟
𝑥21+2𝑅𝑟

𝐿𝑚

𝐿𝑟
𝑥22                      (12) 

𝑑𝑥22

𝑑𝑡
= 

1

𝑇𝑣
𝑥22+𝑥11𝑥12+

𝑅𝑟 𝐿𝑚

𝐿𝑟𝑤𝛿
𝑥21+ 

          𝑅𝑟
𝐿𝑚

𝐿𝑟

𝑥1 2
2  +𝑥 22

2

𝑥21
+

𝐿𝑟

𝑤𝛿
𝑢2                 (13)   

products of the rotor flux vectors and stator current, and 

the square of the rotor-flux linkages. 

Where,  

1

𝑇𝑣
= 

𝑅𝑟𝑤𝛿 +𝑅𝑠𝐿𝑟
2+𝑅𝑟𝐿𝑚

2

𝑤𝛿𝐿𝑟
 

𝑢1 =𝛹𝑟𝑥𝑢𝑠𝑦  – 𝛹𝑟𝑦 𝑢𝑠𝑥               (14) 

𝑢2 = 𝛹𝑟𝑥𝑢𝑠𝑦 + 𝛹𝑟𝑦𝑢𝑠𝑥                           (15)    

 

The compensation for nonlinearities in (11) and (13), 

using the nonlinear feedback, leads to the following 

expressions with the new input variables m1 and m2: 

𝑢1 =
𝑤𝛿

𝑙𝑟
 𝑥11  𝑥22 +

𝐿𝑚

𝑤𝛿
𝑥21 + 𝑚1               (16) 

u1 =
wδ

lr
 −x11x12 −

Rr Lm

Lr wδ
x21 −

Rr Lm

Lr

x12
2 +x22

2

x21
+ m2 (17) 

The sensorless nonlinear control system for the 

induction motors with speed observer system, where 

theˆ symbol denotes the variables estimated by the 

speed observer. 

A novel speed observer system was recently proposed 

in. This speed observer is used for the rotor-speed 

estimation. The rotor-flux linkages of the induction 

motor may be estimated by using the modified 

Luenberger observer system. 

IV.  ROTOR-RESISTANCE IDENTIFICATION 

 The accuracy of the rotor-speed estimation using 

the observer system depends on the value of the rotor 

resistance used in the observer. A simple algorithm for 

the identification of the rotor resistance provides large 

errors which should be eliminated by using extra 
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procedures. The estimation of the rotor resistance using 

the presented modified algorithm was tested by 

computer simulation and experiments. The experimental 

results of the nonlinear control system confirmed the 

necessity of using feed forward neural networks for 

remembering the identified resistance. For the small 

estimation errors of the stator-current components in the 

Luenberger observer, it is possible to assume that 

   isx  ≈ 𝑖 sx                                                                   (18) 

    isy≈𝑖 sy                                                                  (19) 

   
𝑑𝑖𝑠𝑥

𝑑𝜏
≈

𝑑𝑖 𝑠𝑥

𝑑𝜏
                                     (20) 

    
𝑑𝑖𝑠𝑦

𝑑𝜏
≈

𝑑𝑖 𝑠𝑦

𝑑𝜏
                                   (21)                                                             

 

Therefore, taking these relations from the motor model 

and observer system into account yields 

 

     -RrL
2

misx+ RrLm𝜓rx+𝜔r 𝜔σ𝜓ry =  

      -R
*
rL

2
m𝑖 sx+R

*
rLm ψ𝑟𝑥

 + 𝜔*
r𝜔σψ

𝑟𝑦
        (22) 

      -RrL
2

misy+ RrLm𝜓ry - 𝜔r 𝜔σ𝜓rx = 

      -R
*
rL

2
m𝑖 sy+R

*
rLm ψ𝑟𝑦

  - 𝜔*
r𝜔σψ

𝑟𝑥
               (23) 

 Where Rr is the rotor resistance and the variables 

with the superscript∗ denote the estimated parameters. 

The left sides of the aforementioned equations are 

derived from the motor model, and the right sides are 

obtained from the observer system. The rotor angular 

speed varies slowly and could be assumed as a constant 

parameter in the variable-estimation system. Equations 

(22) and (23) are valid at steady state, particularly for 

the instants τ1 and τ2. The instantaneous values of the 

rotor-flux components are not accessed for direct 

measurement. However, it is possible to determine the 

difference between the values of the rotor-flux 

components for the instants τ1 and τ2. This makes it 

possible to determine the values of rotor resistance from 

the following equations, assuming that the rotor angular 

speed is constant and known: 

 

RrLm( -Lm isx+ 𝜓rx) + 𝜔r𝜔σ𝜓ry = zx                              (24) 

RrLm( -Lm isy+ 𝜓ry) + 𝜔r𝜔σ𝜓rx = zy                              (25) 

sx = isx( 2)- isx( 1)                                                  (26) 

sy = isy( 2)- isy( 1)                                                  (27)             

 𝜓rx= 𝜓rx( 2)- 𝜓rx( 1)                                             (28) 

 𝜓ry= 𝜓ry( 2)- 𝜓ry( 1)                                             (29) 

zx = -R
*
r L

2
m (  ( 1) -  ( 2))+R

*
r Lm (  ( 2) 

       - ( 1))+ 𝜔r 𝜔σ(  ( 2)- ( 1) )                (30) 

zy = -R
*
r L

2
m (  ( 2) -  ( 1))+R

*
r Lm (  ( 2) 

         - ( 1))- 𝜔r 𝜔σ(  ( 2)- ( 1) )               (31) 

Using the motor equations, the next relations could be 

obtained 

 

 𝜓rx =  𝜓sx -  isx                                                           (32) 

 𝜓ry =  𝜓sy -  isy                                                           (33) 

 

 

 The instantaneous values of the stator-flux linkage 

components, such as the rotor flux, cannot be directly 

measured. The stator-flux estimation by the voltage 

integration provides an error that resulted from the 

disturbances in the voltage and current signals. Without 

this error, it is possible to estimate the difference of the 

stator-flux vector components at instants τ1 and τ2 as  

 

 𝜓sx =  d                               (34) 

 𝜓sy =  d                             (35) 

 Two additional integrators introduced to the 

estimation system should be connected at a specified 

time with zero initial values. The outputs of these 

integrators at instant τ2 will be the incremental value of 

the stator-current vector components. The rotor 

resistance may be calculated from (35) or (36) as 

follows: 

Rrx =                                             (36) 

Rry =                                             (37) 

 Where Rrx and Rry are, respectively, the rotor-

resistance x- and y-axis components in the stationary 

reference frame. In the following investigations, the next 

calculation algorithm for resistances Rrx and Rry is 

assumed. At instant τ1, when integrators are running, the 

values of the flux and current calculated in the 

Luenberger observer system are registered. The 

integration period equal to 50 periods of transistor 

switching (about 7.5 ms) has been assumed. At instant 

τ2, the flux calculation using the voltage model (34) and 

(35) is completed.  At instant τ2, the values of the flux 

increments are computed by using the voltage models 

(32) and (33), and the flux increments are also computed 
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from the Luenberger observer. Additionally, Δzx, Δzy, 

and resistances Rrx and Rry are computed. The 

computed resistance is filtered and once again used in 

the Luenberger and the speed observer systems. For the 

next 50–100 switching periods, the variables estimated 

in the observers were stabilized. Then, at instant τ1, the 

integrators were again zeroed, and the process started 

from the beginning. Equations (36) and (37) were 

obtained by using approximated relationships, and these 

equations make it possible to identify the rotor 

resistance Rr, with the error depending on the value of 

the rotor resistance R*r assumed in the variable 

estimation algorithm. Relationships (36) and (37) may 

contain division by zero or by small values. In such 

situations, the rotor resistance Rr is calculated with a 

large error. This results from the periodic character of 

the variables, whose increments are calculated. In 

special situations, the values of the periodic variable 

measured at different instances could be the same, and 

then, the increment of the variable would be zero. If the 

rotor resistance calculated from (36) and (37) exceeds 

the assumed limit, such value will be rejected. The 

effect of the mentioned errors may be decreased by 

calculating the averaged rotor resistance Rr_s from the 

calculation for the two phases 

      Rrav = 0.5  (Rrx + Rry)                                      (38) 

. 

 

Fig.1 Simulink model of  Induction motor in discerte mode 

 

. V. ANALYSIS OF SPEED OBSERVER ERRORS DURING 

ROTOR-RESISTANCE IDENTIFICATION 

For an exact description of the effect of rotor-

resistance identification on the operation of the speed 

control system of the induction motor, the mean-square 

averaged error E of speed estimation was calculated. 

The integral of the summation or the square of 

difference between the measured and the estimated 

speeds is assumed as a criterion. Assuming Euler’s 

integration method, the criterion may be defined as 

E= )
2
]dt=                 (39) 
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During the investigations, the rotor speed was 

estimated without using and by using the ANN 

correction. It is seen that the speed estimation error 

decreased by about 50% when the proposed resistance 

estimation method was used 

VI.  MUTUAL-INDUCTANCE IDENTIFICATION OF   THE 

INDUCTION MOTOR. 

For the synthesis of the control system for the 

induction motor, it is essential to compute the mutual 

inductance for any operating point. This parameter 

could be calculated by using the Luenberger observer 

system and a multiscalar motor model. The method 

depends on the iterative identification of this parameter 

using, which has the following form after substituting 

the measured values with the estimated ones from the 

Luenberger observer system: 

   (40) 

the steady state, at the kth step of the observer sampling, 

(18) has the following form: 

 

    0 .                       (41)    

Where (k) and (k) are the estimated 

values at the kth step of the observer sampling. A simple 

relationship for the calculation of the mutual inductance 

ˆLm using the estimated current and rotor flux has been 

developed 

                                        (42) 

It is proved that the iterative method for mutual 

inductance identification gives a result that is close to 

the real value. An acceleration of the identification 

process was used, by getting the new value from the 

following relationship using the acceleration factor. 

Where the value is obtained from (5.20), and  is the 

previous value used in the observer system. The 

acceleration factor k depends on the variables and 

the estimation of the mutual inductance at the steady 

state and during transients using ANNs with a recurrent-

network structure is proposed in this paper. 

 

             =+ .(− ).                            (43) 

VII. MODELLING AND SIMULATION OF INDUCTION 

MOTOR. 

 a) Induction Motor Working In Discrete Mode 

The basic SVPWM based vector control block 

diagram of the proposed drive system of the Induction 

motor is shown in fig.1.The system comprises of the 

following modules:  

 SVPWM based voltage source inverter (VSI) 

module. 

 Three phase Induction motor module. 

 Computation of mathematical equations to 

estimate Rr_s &Lm module. 

b) Simulation of motor in discrete mode. 

Simulation of Induction motor during load condition has 

been observed. The simulation results are given in the 

form of following Figures: 

a. Rotor Resistance in X axis Rr_x. 

b. Rotor Resistance in X axis Rr_y. 

c. Average Rotor Resistance Rr_s. 

d. Angular speed Wr. 

e. Mutual inductance Lm. 

 

Fig.2: Graph of  Wr, Rr_x, Rr_y,& Rr_s. 

 

 
Fig.3: Graph of ωr &Lm 
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c) Estimation of Rotor Resistance And Mutual 

Inductance with Ann. 

 

i)  Estimation of Rotor Resistance with ANN 

        The rotor resistance as mathematical parameter of 

the machine model is not constant and changes with the 

time, temperature, and speed. During transients, which 

is when the speed changes, the resistance estimation 

algorithm shows a large estimation error (30%) although 

filtering is used. Artificial Neural Network (ANN) can 

be used for remembering the rotor resistance at the 

steady states and is determined during transients 

 

Fig. 4: ANN architecture for remembering the rotor 

resistance: feed forward ANN. 

 

ii) Rr_n estimation results using ANN. 

Training input data  of Induction motor using ANN has 

been observed. The simulation results are given in the 

form of following Figures: 

a) Rotor speed ωr 

b) Estimated Rotor Resistance Rr_s. 

c) Rotor resistance calculated by ANN Rr_n. 

  Due to the use of an ANN,Rotor resistance Rr_n in  

the steady-state error was decreased nearly to zero. After 

nearly zeroing the error, small oscillations are observed. 

However, as a result of using the ANN corrector, it does 

not exceed 2.5%. 

 

Fig.5: Graph of ωr, Rr_s &Rr_n Vs Time 

The some oscillations observed during the estimated 

value Rr_s shown in Fig.5.during steady state condition 

ii)  Estimation of Mutual inductance with Ann 

      Artificial Neural Network (ANN) can be used for 

remembering the mutual inductance at the steady states 

and is determined during transients. The structure of the 

mutual inductance estimation using ANN for 

remembering the mutual inductance. ANN is trained 

online on the basis of the mutual inductance calculated 

from the simulation of simulink model for the induction 

motor. 

 
Fig. 6: ANN architecture for remembering the mutual 

inductance feed forward ANN. 

ii)  Lm_n estimation results using ANN. 

 Training input data of Induction motor using ANN 

has been observed. The simulation results are given in 

the form of following Figures: 

a) Rotor speed ωr. 

b) Estimated mutual inductance Lm. 

c) mutual inductance calculated by ANN Lm_n. 

 

 

 
Fig.7: Graph of ωr, &Lm_n Vs Time 

 Due to the use of an ANN, mutual inductance Lm_n 

in the steady-state error was decreased nearly to zero. 

After nearly zeroing the error, small oscillations are 

observed. However, as a result of using the ANN 

corrector, it does not exceed 2.5%. The some 
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oscillations observed during the estimated value Lm 

shown in Fig. 7.during steady state condition. 

 

d)  Rotor resistance Rr_s under no load and load 

condition. 

 
               Fig.8: Graph of Rr_s Vs Time. 

e)  Mutual inductance Lm under no load and load 

condition. 

 

Fig.9: Graph of Lm Vs Time. 

VIII. CONCLUSION 

 The online parameter estimation is essential for 

improved static and dynamic performance for drives 

used in wide speed range applications, such as those in 

electric and hybrid vehicles. The methods for estimating 

the online rotor resistance and mutual inductance of 

induction motor are presented. ANNs for remembering 

the estimated parameters and computing the parameters 

during transients are used. These methods are applied to 

the closed-loop sensorless nonlinear control of induction 

motors. From the results obtained, it is seen that the 

speed estimation process was significantly improved 

and error in estimation is within limit. The proposed 

system is useful for high performance applications.  

APPENDIX I 

INDUCTION-MACHINE DATA 

      HP rating 
 

3  
 

HP 

Rated Voltage (V1) 400 V 

Frequency (f) 50 Hz 

Pole pairs (P) 2  

Stator resistance (Rs) 3.1485 Ohm 

Stator self inductance ( Ls) 0.0197 H 

Rotor resistance ( Rr) 4.6977 Ohm 

Rotor self inductance ( Lr) 0.0197 H 

Mutual Inductance (Lm) 0.8091 H 

Inertia of rotor (J) 0.022 Kg.m
2
 

Rotor speed (Nr) 2990 rpm 
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