Parallelization of Graph Algorithms on GPU Using CUDA

Chetan D. Pise, Shailendra W. Shende
Department of Information Technology
Yeshwantrao Chavan College of Engineering, Nagpur-411 110, Maharashtra, India
Email : 1chetspise@gmail.com, 2shailendra.shende@gmail.com

Abstract- Nowadays graphs play a very important role in the field of Science and Technology. There are some Graph algorithms are fundamental to many disciplines and application areas. Large graphs are common in scientific and engineering applications consisting operation on million of vertices and edges[11, 12]. To have faster execution of such operations parallel computation is very essential to reduce overall computation time. Today’s Graphics processing units (GPUs) have high computation power and low price. This device can be treated as an array of Single Instruction Multiple Data (SIMD) processors using Compute Unified Device Architecture (CUDA) software interface by NVIDIA, becoming a new programming approach of the general purpose computing on graphics processing units (GPGPU). Massively Multithreaded architecture of a CUDA device makes various threads to run in parallel and hence making optimum use of available computation power of GPU. Different parallel algorithms for Breadth first search, Depth first search, Prims algorithm, Kruskal, all pairs shortest path, Dijkstra etc. that are carried out on GPU using CUDA and make their comparative study with respect to execution time, data structure used, input data. In most of the applications GPU can be used as an inexpensive co-processor. Breadth-first search (BFS) is a core primitive for graph traversal and very much important for graph analysis.

Keywords: GPU, CUDA, BFS, NVIDIA Compiler (NVCC).

I. INTRODUCTION

Graph representations are common in many problem domains including scientific, medical and engineering applications. Fundamental graph operations mostly like breadth-first search, single source shortest path, depth-first search etc., occur frequently in these areas. There may some problems which belong to large graph, consisting millions of vertices. These operations have found applications in various problems like routing analysis, map of the countries, transportation, robotics, VLSI chip layout, network traffic analysis, and plant & facility layout, phylogeny reconstruction, data mining, and can require graphs with millions of vertices [1].

Algorithms become impractical on very large graphs on normal System configurations. Parallel algorithms can achieve practical times on basic graph operations but at a high hardware cost. Bader et al. [6] use CRAY MTA-2 supercomputer to perform BFS and single pair shortest path on very large graphs. The hardware is too expensive to use such methods.

Commodity graphics hardware has become a cost-effective parallel platform to solve many problems. Many problems in the fields of linear algebra [6], computer vision, image processing, signal processing, etc., have benefited from its speed and parallel processing capability. There are lot of graph algorithms which are implemented on GPU. They are, however, severely limited by the memory capacity and architecture of the existing GPUs. GPU clusters have also been used to perform compute intensive tasks, like accurate nuclear explosion simulations, finite element computations, etc.

Pawan Harish et al[1] present the implementation of a few fundamental graph algorithms on the Nvidia GPUs using the CUDA model. Specially, we show results on breadth-first search (BFS), all-pairs shortest path (APSP), single-source shortest path (SSSP) algorithms on the GPU. This method is capable of handling large graphs, unlike previous GPU implementations [9]. We can perform BFS on a 10 million vertex random graph with an average degree of 6 in one second and SSSP on it in 1.5 seconds. The times on a scale-free graph of same size is nearly double these. We show that the repeated application of SSSP outscores the standard APSP algorithms on the memory restricted model of the GPUs. We able to compute APSP on graphs with 30K vertices in about 2 minutes. Due to some constrains of memory on the CUDA device graphs above 12 million
Amming computing offers unprecedented performance for scientific and enterprise applications. The structure may not be a pipeline as in case of CPU. With multiple cores driven by very high bandwidth (memory), today’s GPU’s offer incredible resources. The G80 series of GPUs from Nvidia also offers an alternate programming model called Compute Unified Device Architecture (CUDA) to the underlying parallel processor. Pawan Harish[1] demonstrates that how CUDA is highly suited for general purpose programming on the GPUs and provides a model close to the PRAM model. The interface uses standard C code with parallel features. A similar programming model also known as Close To Metal (CTM) is provided by ATI/AMD. 

Author Yanwei Zhao et al[3] says that the prevalent trends in microprocessor architecture has been continually increasing chip-level parallelism. Multi-core CPUs which providing several scalar cores are now commonplace and there is every indication that the trend towards increasing parallelism will continue on towards many-core chips that provide far higher degrees of parallelism. To increase chip-level parallelism GPUs have been at the leading edge to drive towards for some time and are already fundamentally many-core processors. Due to the general purpose computing on graphics processing units (GPGPU) evolves there is a continuing need to explore efficient map projection techniques on emerging architectures.

Applications[7]: CUDA C started in early 2007, a variety of application and industries have enjoyed a great deal of success by choosing to build applications in CUDA C technology. These benefits often include orders-of-magnitude performance improvement over the previous state-of-the-art implementations. Furthermore, applications running on NVIDIA graphics processors enjoy superior performance per dollar and performance per watt than implementations built exclusively on traditional central processing technologies. Just a few of the ways in which people have put CUDA C and the CUDA Architecture into successful use.

Objective:

- Main Objective is to reduce the time for processing millions of vertices from a large graph.
- Providing a good algorithmic solution for upcoming Challenges using newly area as High Performance computing.
- Instead of using expensive supercomputer to process large data we use a low price GPU(GFONRCE -GT630M).
- Lastly shows that how the GPU’s are better to use rather than normal CPU’s to process large data by using best appropriate algorithm.

II. GPU, GPGPU

General purpose programming on Graphics processing Units (GPGPU) tries to solve a problem by posing it as a graphics rendering problem. Using GPU we can restrict the range of solutions. A GPGPU solution is designed to follow the general flow of the graphics pipeline (consisting of vertex, geometry and pixel processors) with each iteration of the solution being one rendering pass. The GPU memory layout is also optimized for graphics rendering. This controls restricts the GPGPU solutions as an optimal data structure may not be available. Creating efficient data structures using the GPU memory model is a challenging problem in itself [1]. GPU-accelerated computing is the use of a graphics processing unit (GPU) together with a CPU to accelerate engineering scientific and enterprise applications. Pioneered in 2007 by NVIDIA Corporation, GPUs now power energy-efficient datacenters in government labs, enterprises, universities and small-and-medium businesses around the world [10].

III. CPU VS GPU

GPU-accelerated computing offers unprecedented application performance by offloading compute-intensive portions of the application to the GPU, while the remaining of the code still runs on the CPU. From a user’s perspective, parallel applications simply run significantly faster on GPU.

Figure 1: How CPU and GPU works [10]

A simple way to understand the difference between a CPU and GPU is to compare how they process tasks. A CPU consists of a few number of cores to optimized...
sequential serial processing while a GPU consists of thousands of smaller and more efficient cores designed for performing multiple tasks simultaneously. Every GPUs have thousands of cores to process Parallel Processing workloads efficiently and efficiently.

Figure 2: CPU vs GPU [10]

IV. CUDA

Compute Unified Device Architecture (CUDA) is a new software and hardware architecture for issuing and managing Multiple computations on the GPU as a data parallel computing device (SIMD) with the no need of mapping them to a graphics API. CUDA has been developed by Nvidia and to use this architecture requires an Nvidia GPU. It is available for the GTX 6 series, GeForce 8 series, etc GPUs, Tesla Solutions and some Quadro Solutions [2].

a. CUDA Software

CUDA allows programmers to write functions known as kernels that will be executed on the GPU. A programmer does not see the hardware architecture of the GPU. Instead, they see a number of threads which are organised into blocks. Each thread is executed following the Single Program Multiple Data (SPMD) model. A CUDA programmer can write how many threads are able to define to execute for each kernel. On an NVIDIA 8800GTX, the programmer can define 512 threads per block only.

V. S. Inamdar et al [2] says that CUDA program is organized into a host program, which consisting one or more sequential threads running on the CPU as host and on device like GPU one or more parallel kernels that are suitable for execution for parallel processing. As a software interface, CUDA API is a set of library functions which can be coded as an extension of the C language. A NVIDIA CUDA compiler (NVCC) generates executable code for the CUDA device.

b. CUDA Software

J. M. Kemp, et al [5] uses CUDA enabled GPUs manufactured by NVIDIA, starting from their G80 range of GPUs and all respective subsequent versions. It is worth noting that an NVIDIA’s G80 range as 8800GTX GPU will be used for their project.

V. PARALLEL ALGORITHMS

I. A. Stewart and Summerville (2007, p25) et al [5] talks of a layered model approach to the architecture design which “organizes a system into layers, each of which provide a certain set of services”. Step by step Layered approach used in this project to design. Each layer can be seen in Figure 4.

a. BFS

This implementation of BFS using CUDA is based upon the work by Harish & Narayanan [in 1] (2007). However, instead of searching a undirected, weighted graph, this implementation searches an unweighted, undirected graph. The search halt process can be happen as soon as the goal node is found, meaning that BFS will always find the fastest route to the goal node.

Figure 3: CUDA hardware model, demonstrating memory hierarchy and overall hardware architecture of CUDA GPUs

Figure 4: Layered system architecture

Figure 5: Graphical User Interface
For BFS, there is one thread per vertex, demonstrated in Figure. Using a block size of 512, the number of blocks and therefore threads are calculated via the number of vertices in the graph that is to be searched. This shows that there is the potential to have 511 redundant threads that are idle during the kernel execution [5].

![Example mapping of threads to vertices](image)

Figure 5: Example mapping of threads to vertices

Author David A. Bader and Kamesh Madduri [6] proposed that Unlike prior parallel approaches to BFS, author says on the MTA-2 we do not consider load balancing or the use of distributed queues for parallelizing BFS. We employ a simple level-synchronized parallel algorithm (Alg. 1) that exploits concurrency at two key steps in BFS:

- All vertices at a given level in the graph can be processed simultaneously, at the head of the queue instead of just picking the vertex (step 7 in Alg. 1).
- The adjacencies of each vertex can be inspected in parallel (step 9 in Alg. 1).

b. DFS

Pawan Harish et al[1] proved that DFS be a very difficult algorithm to design for use with CUDA. Originally, the algorithm began by discovering the neighbors of the source vertex and then performing DFS on each of those newly discovered neighbors. DFS algorithm is proved to be very problematic as several arrays had to be created for each separate search, this algorithm takes large amount of memory. Additionally, the source vertex needed a very high degree, making it not appropriate or unsuitable solution.

VI. CONCLUSION

In this project various serial and parallel algorithms can be develop to compare the results between then and analyze which algorithms are best one for upcoming challenges. Currently I am using NVIDIA GTX630M for my implementation purpose.

VII. REFERENCES

[12] 10th DIMACS Implementation Challenge-Graph Partitioning and Graph Clustering http://www.cc.gatech.edu/dimacs10/index.html


