
International Journal of Electrical, Electronics and Computer Systems (IJEECS)

 ISSN (Online): 2347-2820, Volume -2, Issue-1, January, 2014

95

Parallelization of Graph Algorithms on GPU Using CUDA

1
Chetan D. Pise,

2
Shailendra W. Shende

Department of Information Technology

Yeshwantrao Chavan College of Engineering, Nagpur-411 110, Maharashtra, India

Email :
1
chetspise@gmail.com,

2
shailendra.shende@gmail.com

Abstract- Nowadays graphs play a very important role in

the field of Science and Technology. There are some Graph

algorithms are fundamental to many disciplines and

application areas. Large graphs are common in scientific

and engineering applications consisting operation on

million of vertices and edges[11, 12]. To have faster

execution of such operations parallel computation is very

essential to reduce overall computation time. Today’s

Graphics processing units (GPUs) have high computation

power and low price. This device can be treated as an

array of Single Instruction Multiple Data (SIMD)

processors using Compute Unified Device Architecture

(CUDA) software interface by NVIDIA, becoming a new

programming approach of the general purpose computing

on graphics processing units (GPGPU). Massively

Multithreaded architecture of a CUDA device makes

various threads to run in parallel and hence making

optimum use of available computation power of GPU.

Different parallel algorithms for Breadth first search,

Depth first search, Prims algorithm, Kruskal, all pairs

shortest path, Dijkstra etc. that are carried out on GPU

using CUDA and make their comparative study with

respect to execution time, data structure used, input data.

In most of the applications GPU can be used as an

inexpensive co-processor. Breadth-first search (BFS) is a

core primitive for graph traversal and very much

important for graph analysis.

Keywords: GPU, CUDA, BFS, NVIDIA Compiler (NVCC).

I. INTRODUCTION

Graph representations are common in many problem

domains including scientific, medical and engineering

applications. Fundamental graph operations mostly like

breadth-first search, single source shortest path, depth-

first search etc., occur frequently in these areas. There

may some problems which belong to large graph,

consisting millions of vertices. These operations have

found applications in various problems like routing

analysis, map of the countries, transportation, robotics,

VLSI chip layout, network traffic analysis, and plant &

facility layout, phylogeny reconstruction, data mining,

and can require graphs with millions of vertices [1].

Algorithms become impractical on very large graphs on

normal System configurations. Parallel algorithms can

achieve practical times on basic graph operations but at

a high hardware cost. Bader et al. [6] use CRAY MTA-2

supercomputer to perform BFS and single pair shortest

path on very large graphs. The hardware is too

expensive to use such methods.

Commodity graphics hardware has become a cost-

effective parallel platform to solve many problems.

Many problems in the fields of linear algebra [6],

computer vision, image processing, signal processing,

etc., have benefited from its speed and parallel

processing capability. There are lot of graph algorithms

which are implemented on GPU. They are, however,

severely limited by the memory capacity and

architecture of the existing GPUs. GPU clusters have

also been used to perform compute intensive tasks, like

accurate nuclear explosion simulations, finite element

computations, etc.

Pawan Harish et al[1] present the implementation of a

few fundamental graph algorithms on the Nvidia GPUs

using the CUDA model. Specially, we show results on

breadth-first search (BFS), all-pairs shortest path

(APSP), single-source shortest path (SSSP) algorithms

on the GPU. This method is capable of handling large

graphs, unlike previous GPU implementations [9]. We

can perform BFS on a 10 million vertex random graph

with an average degree of 6 in one second and SSSP on

it in 1.5 seconds. The times on a scale-free graph of

same size is nearly double these. We show that the

repeated application of SSSP outscores the standard

APSP algorithms on the memory restricted model of the

GPUs. We able to compute APSP on graphs with 30K

vertices in about 2 minutes. Due to some constrains of

memory on the CUDA device graphs above 12 million

mailto:2shailendra.shende@gmail.com

International Journal of Electrical, Electronics and Computer Systems (IJEECS)

 ISSN (Online): 2347-2820, Volume -2, Issue-1, January, 2014

96

vertices with 6 degree per vertex cannot be handled

using current GPUs[1].

Authors[2] Swapnil D. Joshi and V. S. Inamdar also

discussed about GPU as GPU stands for Graphics

Processing Unit and is a single chip processor used

primarily for 3D applications. It creates lighting effects

and transforms objects every time a 3D scene is

redrawn. These are fully mathematically-intensive tasks

and would put quite a strain on the expensive CPU.

Lifting such burden from the CPU frees up cycles that

can be used for other jobs. GPU provides high

computational power with low costs. More transistors

can be devoted for data computation rather than data

caching & flow control as in case of CPU. With multiple

cores driven by very high bandwidth (memory), today’s

GPU’s offer incredible resources. The G80 series of

GPUs from Nvidia also offers an alternate programming

model called Compute Unified Device Architecture

(CUDA) to the underlying parallel processor. Pawan

Harish[1] demonstrates that how CUDA is highly suited

for general purpose programming on the GPUs and

provides a model close to the PRAM model. The

interface uses standard C code with parallel features. A

similar programming model also known as Close To

Metal (CTM) is provided by ATI/AMD.

Author Yanwei Zhao et al[3] says that the prevalent

trends in microprocessor architecture has been

continually increasing chip-level parallelism. Multi-core

CPUs which providing several scalar cores are now

commonplace and there is every indication that the trend

towards increasing parallelism will continue on towards

many-core chips that provide far higher degrees of

parallelism. To increase chip-level parallelism GPUs

have been at the leading edge to drive towards for some

time and are already fundamentally many-core

processors. Due to the general purpose computing on

graphics processing units (GPGPU) evolves there is a

continuing need to explore efficient map projection

techniques on emerging architectures.

Applications[7]: CUDA C started in early 2007, a

variety of application and industries have enjoyed a

great deal of success by choosing to build applications in

CUDA C technology. These benefits often include

orders-of-magnitude performance improvement over the

previous state-of-the-art implementations. Furthermore,

applications running on NVIDIA graphics processors

enjoy superior performance per dollar and performance

per watt than implementations built exclusively on

traditional central processing technologies. Just a few of

the ways in which people have put CUDA C and the

CUDA Architecture into successful use.

Objective:

 Main Objective is to reduce the time for

processing millions of vertices from a large

graph.

 Providing a good algorithmic solution for

upcoming Challenges using newly area as High

Performance computing.

 Instead of using expensive supercomputer to

process large data we use a low price

GPU(GFORCE -GT630M).

 Lastly shows that how the GPU’s are better to

use rather than normal CPU’s to process large

data by using best appropriate algorithm.

II. GPU, GPGPU

General purpose programming on Graphics processing

Units (GPGPU) tries to solve a problem by posing it as a

graphics rendering problem. Using GPU we can restrict

the range of solutions. A GPGPU solution is designed to

follow the general flow of the graphics pipeline

(consisting of vertex, geometry and pixel processors)

with each iteration of the solution being one rendering

pass. The GPU memory layout is also optimized for

graphics rendering. This controls/restricts the GPGPU

solutions as an optimal data structure may not be

available. Creating efficient data structures using the

GPU memory model is a challenging problem in itself

[1]. GPU-accelerated computing is the use of a graphics

processing unit (GPU) together with a CPU to accelerate

engineering scientific and enterprise applications.

Pioneered in 2007 by NVIDIA Corporation, GPUs now

power energy-efficient datacenters in government labs,

enterprises, universities and small-and-medium

businesses around the world [10].

III. CPU VS GPU

GPU-accelerated computing offers unprecedented

application performance by offloading compute-

intensive portions of the application to the GPU, while

the remaining of the code still runs on the CPU. From a

user’s perspective, parallel applications simply run

significantly faster on GPU.

Figure 1: How CPU and GPU works [10]

A simple way to understand the difference between a

CPU and GPU is to compare how they process tasks. A

CPU consists of a few number of cores to optimized

International Journal of Electrical, Electronics and Computer Systems (IJEECS)

 ISSN (Online): 2347-2820, Volume -2, Issue-1, January, 2014

97

sequential serial processing while a GPU consists of

thousands of smaller and more efficient cores designed

for performing multiple tasks simultaneously. Every

GPUs have thousands of cores to process Parallel

Processing workloads efficiently and efficiently.

Figure 2: CPU vs GPU [10]

IV. CUDA

Compute Unified Device Architecture (CUDA) is a new

software and hardware architecture for issuing and

managing Multiple computations on the GPU as a data

parallel computing device (SIMD) with the no need of

mapping them to a graphics API. CUDA has been

developed by Nvidia and to use this architecture requires

an Nvidia GPU. It is available for the GTX 6 series,

GeForce 8 series, etc GPUs, Tesla Solutions and some

Quadro Solutions [2].

a. CUDA Software

CUDA allows programmers to write functions known as

kernels that will be executed on the GPU. A

programmer does not see the hardware architecture of

the GPU. Instead, they see a number of threads which

are organised into blocks. Each thread is executed

following the Single Program Multiple Data (SPMD)

model. A CUDA programmer can write how many

threads are able to define to execute for each kernel. On

an NVIDIA 8800GTX, the programmer can define 512

threads per block only.

V. S. Inamdar et al[2] says that CUDA program is

organized into a host program, which consisting one or

more sequential threads running on the CPU as host and

on device like GPU one or more parallel kernels that are

suitable for execution for parallel processing. As a

software interface, CUDA API is a set of library

functions which can be coded as an extension of the C

language. A NVIDIA CUDA compiler(NVCC)

generates executable code for the CUDA device.

b. CUDA Software

J. M. Kemp, et al [5] uses CUDA enabled GPUs

manufactured by NVIDIA, starting from their G80 range

of GPUs and all respective subsequent versions. It is

worth noting that an NVIDIA’s G80 range as 8800GTX

GPU will be used for their project.

Figure 3: CUDA hardware model, demonstrating

memory hierarchy and overall hardware architecture of

CUDA GPUs

V. PARALLEL ALGORITHMS

I.A. Stewart and Summerville (2007, p25) et al[5] talks

of a layered model approach to the architecture design

which “organizes a system into layers, each of which

provide a certain set of services”. Step by step Layered

approach used in this project to design. Each layer can

be seen in Figure 4.

Figure 4: Layered system architecture

a. BFS

This implementation of BFS using CUDA is based upon

the work by Harish & Narayanan [in 1] (2007).

However, instead of searching a undirected, weighted

graph, this implementation searches an unweighted,

undirected graph. The search halt process can be happen

as soon as the goal node is found, meaning that BFS will

always find the fastest route to the goal node.

International Journal of Electrical, Electronics and Computer Systems (IJEECS)

 ISSN (Online): 2347-2820, Volume -2, Issue-1, January, 2014

98

For BFS, there is one thread per vertex, demonstrated in

Figure . Using a block size of 512, the number of blocks

and therefore threads are calculated via the number of

vertices in the graph that is to be searched. This shows

that there is the potential to have 511 redundant threads

that are idle during the kernel execution [5].

Figure 5: Example mapping of threads to vertices

Author David A. Bader and Kamesh Madduri [6]

proposed that Unlike prior parallel approaches to BFS,

author says on the MTA-2 we do not consider load

balancing or the use of distributed queues for

parallelizing BFS. We employ a simple level-

synchronized parallel algorithm (Alg. 1) that exploits

concurrency at two key steps in BFS:

 All vertices at a given level in the graph can be

processed simultaneously, at the head of the

queue instead of just picking the vertex (step 7

in Alg. 1).

 The adjacencies of each vertex can be inspected

in parallel (step 9 in Alg. 1).

b. DFS

Pawan Harish et al[1] proved that DFS be a very

difficult algorithm to design for use with CUDA.

Originally, the algorithm began by discovering the

neighbors of the source vertex and then performing DFS

on each of those newly discovered neighbors. DFS

algorithm is proved to be very problematic as several

arrays had to be created for each separate search, this

algorithm takes large amount of memory. Additionally,

the source vertex needed a very high degree, making it

not appropriate or unsuitable solution.

VI. CONCLUSION

In this project various serial and parallel algorithms can

be develop to compare the results between then and

analyze which algorithms are best one for upcoming

challenges. Currently I am using NVIDIA GTX630M

for my implementation purpose.

VII. REFERENCES

[1] Pawan Harish and P. J. Narayanan, “Accelerating

large graph algorithms on the GPU using

CUDA”, Center for Visual Information

Technology, IIITHyderabad 2008.

[2] Swapnil D. Joshi, Mrs. V. S. Inamdar,

“Performance Improvement in Large Graph

Algorithms on GPU using CUDA: An

Overview”, International Journal of Computer

Applications (0975 – 8887) Volume 10–No.10,

November 2010.

[3] Yanwei Zhao, Zhenlin Cheng, Hui Dong, Jinyun

Fang, Liang Li, “Fast Map Projection on

CUDA”, IGARSS 2011.

[4] Enrico Mastrostefano, Massimo Bernaschi,

Massimiliano Fatica, “Large Graph on multi-

GPUs”, IAC-CNR, Rome, Italy NVIDIA

Corporation May 11, 2012.

[5] J. M. Kemp, I. A. Stewart, “Parallel Graph

Searching Algorithms using CUDA”, Board of

Examiners in the School of Engineering and

Computing Sciences, Durham University 2011.

[6] David A. Bader, Kamesh Madduri, “Designing

Multithreaded Algorithms for Breadth-First

Search and st-connectivity on the Cray MTA-2”,

February 26, 2006.

[7] Book: Jason Sanders, Edward Kandrot,

“Programming based on CUDA”.

[8] Book: CUDA C Programming Guide.

[9] Book: David B. Kirk, Wen-Mei W. Hwu,

“Programming Massively Parallel Processors”.

[10] http://www.nvidia.com/object/what-is-gpu-

computing.html

[11] 9th DIMACS implementation challange –

Shortest paths

http://www.dis.uniroma1.it/challenge9/download.

shtml.

[12] 10th DIMACS Implementation Challenge-Graph

Partitioning and Graph Clustering

http://www.cc.gatech.edu/dimacs10/index.html

[13] Duane Merrill, Michael Garland, Andrew

Grimshaw. “Scalable GPU Graph Traversal”

ACM PPoPP’12, February 25–29, 2012, New

Orleans, Louisiana, USA.2012.

[14] Lijuan Luo, Martin Wong, Wen-mei Hwu, “An

Effective GPU Implementation of Breadth-First

Search”, ACM DAC-10 June 13-18, 2010,

Anaheim, California, USA.

[15] Hillis, W.D. and Steele, G.L. 1986. Data parallel

algorithms. Communications of the ACM. 29, 12

(Dec. 1986), 1170-1183.

[16] Hong, S. et al. 2011. Accelerating CUDA graph

algorithms at maximum warp. Proceedings of the

16th ACM symposium on Principles and practice

International Journal of Electrical, Electronics and Computer Systems (IJEECS)

 ISSN (Online): 2347-2820, Volume -2, Issue-1, January, 2014

99

of parallel programming (New York, NY, USA,

2011), 267–270.

[17] Yoo, A. et al. A Scalable Distributed Parallel

Breadth-First Search Algorithm on BlueGene/L.

ACM/IEEE SC 2005 Conference (SC’05)

(Seattle, WA, USA), 25-25.

[18] Dotsenko, Y. et al. 2008. Fast scan algorithms on

graphics processors. Proceedings of the 22nd

annual international conference on

Supercomputing (New York, NY, USA, 2008),

205–213.

[19] Bader, D.A. et al. On the Architectural

Requirements for Efficient Execution of Graph

Algorithms. 2005 International Conference on

Parallel Processing (ICPP’05) (Oslo, Norway),

547-556.

[20] Sengupta, S. et al. 2008. Efficient parallel scan

algorithms for GPUs. Technical Report #NVR-

2008-003. NVIDIA.

