
International Journal on Mechanical Engineering and Robotics (IJMER)

__

__

ISSN (Print) : 2321-5747, Volume-2, Issue-3,2014

38

Control system for Robotic Arms over Controller Area Network

(CRACAN)
1
Anu Jose,

2
Shinu M R,

3
Gana Rani Jose

1,2,3
Department of Computer Science Engineering,

Amrita Vishwa Vidyapeetham, Bangalore

Email:
1
Anujoseph.me@gmail.com,

2
mr_shinu@blr.amrita.edu,

3
rani.gana@gmail.com

Abstract - Now a day’s robots have advanced from single

processor to a networked multiprocessor system. However,

sequential and synchronous control methods that

traditionally have been adapted to robots and automation

systems are not functioning well for distributed robots and

control systems. In this work a distributed robot control

system based upon controller area network (CAN), of which

components are implemented with mostly aperiodic and event

triggered approaches to exchange messages is discussed.

Keywords: robot control system, arm robots, keil compiler,

Controller area network, event triggering, adaptive cruise

control, ECU, Windshield Wiper control, PI controller.

I. INTRODUCTION

The most known network protocols for embedded systems

are event-triggered (ETP) and time-triggered (TTP), which

provide their own advantages of using them. Currently

event-triggered protocol is used in vehicles, which means

that in principle all activities are invoked by an event; most

messages are transmitted periodically to the

communication bus though. The event-triggered protocol

is non-deterministic because the activities of a bus system

are advanced by the sequence of events. In addition

messages are exchanged in response to events

spontaneously. In Event-triggered vehicular systems ECUs,

sensors and actuators all are demand driven. The ECUs

processes upon receiving sensor signals, in which a sensor

with a changing value immediately sends a message to the

ECU. The actuators behave upon signals from the ECUs.

The time-triggered protocols are deterministic because the

tasks are executed by the progression of time, and

messages are exchanged periodically.

In time-triggered automotive systems, sensors are polled

by ECUs regularly to provide any changes or signals, upon

which ECUs execute the corresponding tasks. The

actuators are working periodically even without signals

from ECUs. The event-triggered system requires a

dynamic scheduling strategy because the time of a task

invocation cannot be predicted

In distributed robots environment, various components

such as sensors, actuators, computers, and users are

demanded to work in a good harmony and coordination in

order to allow multiple robots to operate synchronously or

asynchronously. Hence this enables the multiple robots

over a communication network to operate seemingly on

distributed control environments, where tasks are

scheduled to perform trying to achieve utmost efficiency in

time usage and resource share. When selecting a

communication network for networked or distributed

robots environments, there are some expected aspects to

look into such as bus access type, bandwidth, control

option, and number of components available over the bus,

power level, and others.

II. CONTROLLER AREA NETWORK

The Controller Area Network (CAN) is a multi master

serial bus that uses broadcast to transmit to all the CAN

nodes. CAN protocol have several advantages over other

communication protocols. For example, CAN protocol

offer a very good price/performance ratio. It allows

moving data with a fast transmission speed (up to 1 Mbit/s)

and can be implemented in real-time systems. Moreover,

the data is very reliable and error detection is sophisticated

and robust. The CAN bus was developed as a multi-master,

message broadcast system that specifies a maximum

signalling rate of 1M bit per second (bps). Unlike a

traditional network such as USB or Ethernet, CAN does

not send large blocks of data point-to-point from node A to

node B under the supervision of a central bus master. In a

CAN network many short messages like temperature or

RPM are broadcast to the entire network, which allows for

data consistency in every node of the system.

International Journal on Mechanical Engineering and Robotics (IJMER)

__

__

ISSN (Print) : 2321-5747, Volume-2, Issue-3,2014

39

A. Frame format of CAN 2.0.

The meaning of the bit fields of Figure are

• SOF—The single dominant start of frame (SOF) bit

marks the start of a message, and is used to

synchronize the nodes on a bus after being idle.

• Identifier—The Standard CAN 11-bit identifier

establishes the priority of the message. The lower the

binary value, the higher its priority.

• RTR—The single remote transmission request (RTR)

bit is dominant when information is required from

another node. All nodes receive the request, but the

identifier determines the specified node. The

responding data is also received by all nodes and

used by any node interested. In this way all data

being used in a system is uniform.

• IDE—A dominant single identifier extension (IDE)

bit means that a standard CAN identifier with no

extension is being transmitted.

• r0—Reserved bit (for possible use by future standard

amendment).

• DLC—The 4-bit data length code (DLC) contains the

number of bytes of data being transmitted.

• Data—Up to 64 bits of application data may be

transmitted.

• CRC—The 16-bit (15 bits plus delimiter) cyclic

redundancy check (CRC) contains the checksum

(number of bits transmitted) of the preceding

application data for error detection.

• ACK—Every node receiving an accurate message

overwrites this recessive bit in the original message

with a dominate bit, indicating an error-free message

has been sent. Each node acknowledges (ACK) the

integrity of its data. ACK is 2 bits, one is the

acknowledgement bit and the second is a delimiter.

• EOF—This end-of-frame (EOF) 7-bit field marks the

end of a CAN frame (message) and disables bit–

stuffing, indicating a stuffing error when dominant.

When 5 bits of the same logic level occur in

succession during normal operation, a bit of the

opposite logic level is stuffed into the data.

• IFS—This 7-bit inter-frame space (IFS) contains the

amount of time required by the controller to move a

correctly received frame to its proper position in a

message buffer area.

B. Bus arbitration

Bus access is event-driven and takes place randomly. If

two nodes try to occupy the bus simultaneously, access is

implemented with a non-destructive, bit-wise arbitration.

Non destructive means that the node winning arbitration

just continues on with the message, without the message

being destroyed or corrupted by another node. The

allocation of priority to messages in the identifier is a

feature of CAN that makes it particularly attractive for use

within a real-time control environment. The lower the

binary message identifier number, the higher its priority.

An identifier consisting entirely of zeros is the highest

priority message on a network since it holds the bus

dominant the longest. Therefore, if two nodes begin to

transmit simultaneously, the node that sends a zero

(dominant) while the other nodes send a one (recessive)

gets control of the CAN bus and goes on to complete its

message. A dominant bit always overwrites a recessive bit

on a CAN bus.

III. LITERATURE SURVEY

CAN is a protocol for short messages. Each transmission

can carry 0 - 8 bytes of data. This makes it suitable for

transmission of trigger signals and measurement values. It

is a CSMA/AMP (Carrier Sense Multiple Access /

Arbitration by Message Priority) type of protocol. Thus the

protocol is message oriented and each message has a

specific priority according to which it gains access to the

bus in case of simultaneous transmission. An ongoing

transmission is never interrupted. Any node that want to

transmit message waits until the bus is free and then starts

to send the identifier of its message bit by bit. A zero is

dominant over a one and a node has lost the arbitration

when it has written a one but reads a zero on the bus. As

soon as a node has lost the arbitration it stops transmitting

but continues reading the bus signals. When the bus is free

again the CAN Controller automatically makes a new

attempt to transmit its message. This procedure as well as

error checking and retransmission of corrupted messages

are done by the CAN Controller chips. The arbitration

procedure requires that there are a limited number of

identifiers in Extended CAN more than 500 million) and

that a specific identifier is sent only by one node. The only

International Journal on Mechanical Engineering and Robotics (IJMER)

__

__

ISSN (Print) : 2321-5747, Volume-2, Issue-3,2014

40

exception from this rule is when a message carries no data.

As the amount of data that can be sent in one transmission

is limited to eight bytes the maximum latency time of the

highest priority message can be calculated. The maximum

latency time of any message can be calculated if the nodes

are restricted to the use of the same message identifier,

once transmitted, until a specified time has elapsed. Every

CAN Controller in a network will receive any message

transmitted on the bus. Each node has to check whether a

message is for him or not. Any CAN Controller on the

market offers some filtering capacity to reduce the

processor capacity needed for this activity, some more

elaborate than others. CAN was designed for event driven

systems but it is not difficult to use the protocol in time

driven systems. Systems mixing both principles are also

possible.[3].

The main advantage of event-triggered systems is their

ability to fastly react to asynchronous external events

which are not known in advance. Thus, they show a better

real-time performance in comparison with time-triggered

systems. In addition, event-triggered systems possess a

higher flexibility and allow in many cases the adaptation to

the actual demand without a redesign of the complete

system. Within a time-triggered communication the

permission to access the bus is controlled by predefined

time windows (TDMA, time division multiple access).

Therefore, time-triggered concepts potentially provide a

higher dependability, since e.g. missing messages are

immediately detected. Other important properties are the

possibility to guard the bus against non authorized bus

accesses (bus guardian) and to realize synchronously

working busses in order to take care for redundancy. A

very interesting property from the point of view of the

automotive field concerns the so called compos ability.

Since the time windows to access the bus are predefined,

the behaviour along the timeline is decoupled from the

actual bus load. Thus, it is possible to develop different

subsystems independently, to exactly simulate the final

time behaviour of the subsystems and subsequently to

integrate the subsystems in to the complete system. In

general, reality is neither black nor white but rather gray.

Thus, it depends on the application whether a time-

triggered or an event-triggered behaviour is more

suitable.[2]

Computing infrastructures of mobile robots have grown in

complexity in the last decades; they have evolved from

single processor systems to networks of microcontrollers

communicating through a shared bus. This has induced

additional architectural constraints that do not fit well with

the traditional polling-based sensors and actuators control.

To address this issue, they have developed ASEBA, an

event-based middleware that allows distributed control and

efficient resources exploitation of multi-microcontrollers

robots. ASEBA provides hardware modularity, better

efficiency, and improved scalability by embedding a

lightweight virtual machine in each microcontroller and

providing an IDE to develop and debug the whole robot

reactive control from a single place.[4].

Scheduling messages on a CAN bus is analogous to

scheduling tasks by fixed priorities. Because CAN

messages are non-pre-emptive, the existing worst-case

response time analysis for fixed-priority pre-emptive

scheduling (FPPS) has been updated to take account of

tasks being non pre-emptive, i.e. resulting in worst-case

response time analysis for fixed-priority non-pre-emptive

scheduling (FPNS).

IV. SYSTEM DESIGN

A. 4.1 Block diagram

Fig 1: Block diagram of system

CRACAN is the design and development of a robot

control system in which components are handled with

event triggered approach over CAN (Controller Area

Network). CAN bus is used to connect distributed

hardware and software modules. CAN has been known to

be very suitable any real time systems with its low cost and

high reliability as a network. With CAN the functions of

the distributed control systems perform well with more

enhanced modularity and provide well-organized

distributed controls.

In distributed control systems, conventional location based

networks are not in favour, but rather message based

networks such as CAN are in more favour. CAN has been

known to be very suitable any real time systems with its

low cost and high reliability as a network. Furthermore, the

amount of wiring between components or modules is

International Journal on Mechanical Engineering and Robotics (IJMER)

__

__

ISSN (Print) : 2321-5747, Volume-2, Issue-3,2014

41

drastically reduced by using a shared data bus, CAN,

instead of hardwired point-to-point connections. As shown

in Figure 1, CAN controllers and other components are

connected over a shared CAN bus so as to avoid the need

of having the components with point to point connections

that accrue a large amount of wiring, more complex

electric circuits and noise, which result in a less effective

and reliable system.

With CAN, the functions of the distributed control systems

perform well with more enhanced modularity and provide

well-organized distributed controls. Under this setup the

proposed distributed control system with CAN is able to

perform and show the speedy synchronization The

CRACAN system works with the following functions. End

users can select the options on the main menu as a guide,

where the menu options are shown: Hard-home all robots,

Move to point A, Move to point B, Perform coordinated

task, Perform sequential task, Open gripper, Close gripper,

Check system status, Direct command, and Quit. More

required functions are followed by such as:

• Hard-home all robots: This performs the Rhino hard

home operation, where the Rhino controller positions

the arm into an initial "home" position. This is a

normally a pre-condition to beginning any robot tasks.

• Move to point A: This moves a user-named robot to

position "A".

• Move to point B: As above, but using position "B".

• Perform coordinated task: This option simulates a

coordinated job, representative of an assembly line.

All robots perform simultaneously. The user supplies

the number of repetitions of the "job" to be

performed, which consists of moving to point A,

where the gripper is closed, to point B, where the

gripper is opened, repeatedly, until the number of

repetitions is exhausted. The task could be described

as a grab and drop move.

• Perform sequential task: The robot arms perform the

same task as above, but each will complete its move

prior to the next robot in sequence begins its move.

This routine tests the timeliness of message passing

and the proper execution order of movement logic.

• Open (Close) gripper: Opens (closes) all end

effectors.

• Check system status: The user is presented with

submenus that gather the particular robot to address

and the status types: system status, error stack, motor

status, system configuration, diagnostics display.

V. SIMULATOR AND SIMULATION RESULTS

The µVision4 IDE is a window-based software

development platform that combines a robust and modern

editor, project manager, and makes facility. µVision4

integrates all the tools you need to develop embedded

applications including C/C++ compiler, macro assembler,

linker/locator, and a HEX file generator. µVision4 helps

expedite the development process of your embedded

application by providing the following:

 Full-featured source code editor,

 Device Database for configuring the development

tool

 Project Manager for creating and maintaining your

projects

 Integrated Make Utility functionality for assembling,

compiling, and linking your embedded applications

 Dialogs for all development environment settings

 True integrated source-level and assembler-level

Debugger with high-speed CPU and peripheral

Simulator,

 Advanced GDI interface for software debugging in

the target hardware and for connecting to the Keil

ULINK Adapter family

 Flash programming utility for downloading the

application program into Flash ROM

 Links to manuals, on-line help, device datasheets, and

user guides.

The µVision4 IDE offers numerous features and

advantages that help you to develop embedded

applications quickly and successfully. The Keil tools are

easy to use, and are guaranteed to help you achieve your

design goals in a timely manner.

The CRACAN system works with the following functions.

End users can select the options on the main menu as a

guide, where the menu options are shown: Hard-home all

robots, Move to point A, Move to point B, Perform

coordinated task, Perform sequential task, Open gripper,

Close gripper.

• Hard-home all robots. In this case the main controller

will send data ―0‖ to all robots.

International Journal on Mechanical Engineering and Robotics (IJMER)

__

__

ISSN (Print) : 2321-5747, Volume-2, Issue-3,2014

42

Fig 2: Block diagram of system

• Move to point A: This moves a user-named robot to

position "A" for that the main controller will send data ―A‖

Over CAN bus.

Fig 3: Block diagram of system

• Move to point B: This moves a user-named robot to

position "B" for that the main controller will send data ―B‖

Over CAN bus.

Fig 4: Block diagram of system

 • Perform coordinated task: This option simulates a

coordinated job, representative of an assembly line.

All robots perform simultaneously. The user

supplies the number of repetitions of the "job" to be

performed, which consists of moving to point A,

where the gripper is closed, to point B, where the

gripper is opened, repeatedly, until the number of

repetitions is exhausted. The task could be

described as a grab and drop move.

• Perform sequential task: The robot arms perform

the same task as above, but each will complete its

move prior to the next robot in sequence begins its

move. This routine tests the timeliness of message

passing and the proper execution order of

movement logic.

• Open gripper: Opens all end effectors. The main

controller will send data ―F‖ over CAN bus

. Fig 5: Block diagram of system

VI. CONCLUSION

Distributed control systems over CAN is designed and

implemented so as to understand more and to find a better

way to control various components of the real-time

systems efficiently. On the distributed control systems,

CRACAN, components are handled with event triggered

approach to exchange messages and function properly. The

discussed system is implemented over the controller area

network (CAN) to have several robots function in

synchronous and asynchronous ways. In synchronized

move the robots of the CRACAN perform the same

activities via control of the main microcontroller, which

handles serial port initiation, robot initiation and others.

REFERENCES

[1] Haklin Kimm ―Distributed Event-Triggered Robot

Control System over Controller Area

Network‖, Proceedings the 2012 IEEE International

International Journal on Mechanical Engineering and Robotics (IJMER)

__

__

ISSN (Print) : 2321-5747, Volume-2, Issue-3,2014

43

Conference on Industrial Technology, Athens,

Greece, March 19 – 21, 2012.

[2] V. Claesson, C. Ekelin, N. Suri, ―The event-

triggered and time-triggered medium-access

methods,‖ Proceedings of the IEEE International

Symposium on Object-Oriented Real-Time

Distributed Computing (ISORC'03), 2003.

[3] M. Bago, S. Marijan, and N. Peric, ―Modeling

Controller Area Network Communication‖, The 5th

IEEE International Conference on Industrial

Informatics, Vol. 1,pp.485-490, 23-27 June 2007.

[4] Magnenat S., "A Modular Architecture for Event-

based Controls of Complex Robots," International

Conference on Intelligent Robots and Systems,"

IEEE/ASME Transactions on Mechatronics, Vol.

16-2, April 2011.

[5] CAN specification version 2.0. Robert Bosch

GmbH, Stuttgart, Germany,1991.

