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Abstract -  The usage of the FPGA (Field Programmable 

Gate Array) for neural network implementation provides 

flexibility in programmable systems. For the neural 

network based instrument prototype in real time 

application, conventional specific VLSI neural chip design 

suffers the limitation in time and cost. With low precision 

artificial neural network design, FPGAs have higher speed 

and smaller size for real time application than the VLSI 

design. In addition, artificial neural network based on 

FPGAs has fairly achieved with classification application. 

The programmability of reconfigurable FPGAs yields the 

availability of fast special purpose hardware for wide 

applications. Its programmability could set the conditions 

to explore new neural network algorithms and problems of 

a scale that would not be feasible with conventional 

processor. The goal of this work is to realize the hardware 

implementation of neural network using FPGAs. Digital 

system architecture is presented using Very High Speed 

Integrated Circuits Hardware Description Language 

(VHDL) and is implemented in FPGA chip. 

Keywords— Backpropagation, field programmable gate   

array (FPGA), multilayer perceptron, neural network, 

VHDL, Xilinx FPGA 

 

I. INTRODUCTION 

 It is a computational system inspired by the 

Structure, Processing Method, Learning Ability of a 

biological brain. Artificial Neural Networks (ANNs) can 

solve great variety of problems in areas of pattern 

recognition, image processing and medical diagnostic. 

The biologically inspired ANNs are parallel and 

distributed information processing systems. This system 

requires the massive parallel computation. 

 ANN is an information processing system that aims 

to simulate human brain's architecture and function. It is 

now a popular subject in many fields and is also a tool 

in many areas of problem solving. ANNs have been 

successfully applied to solve problems where 

conventional methods have been unsuccessful, such as 

speech recognition and synthesis, image processing and 

coding, pattern recognition and classification, power 

load forecasting, interpretation and prediction of 

financial trends for stock-market, manufacturing of 

composite structures, processing modeling, monitoring 

and control etc. 

Characteristics of Artificial Neural Networks  

 A large number of very simple processing neuron-

like processing elements. A large number of weighted 

connections between the elements Distributed 

representation of knowledge over the connections 

Knowledge is acquired by network through a learning 

process. 

Reasons for Usage of Artificial Neural Networks 

 The main reasons for using an Artificial Neural 

Networks are as follows. It provides Massive 

Parallelism. A Distributed representation of any system 

can be developed with enhance Learning ability and 

Generalization ability of the system. It will also provide 

Fault tolerance. 

Elements of Artificial Neural Networks 

- Processing Units 

- Topology 

- Learning Algorithm 

FPGAs are chosen for implementation ANNs with the 

following reason: 

 They can be applied a wide range of logic gates 

starting with tens of thousands up to few millions 

gates. 

 They can be reconfigured to change logic function 

while resident in the system. 
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 FPGAs have short design cycle that leads to fairly 

inexpensive logic design. 

 FPGAs have parallelism in their nature. Thus, they 

have parallel computing environment and allows 

logic cycle design to work parallel. 

 They have powerful design, programming and 

syntheses tools. 

A.  Mathematical Model 

 A multilayer neural network is composed of one 

input layer, several hidden layers for computation and 

one output layer. Each layer consists of a set of 

processing elements called neurons and the main task of 

each neuron is processing the following function: 

y = [Cx) = [CLf=1 WiXi + b)…………………… (1) 

where Xi stands for the ith input, and Wi is the weight in 

the i
th

 connection and b is the bias. The function f(x) is 

the nonlinear active function used in the neuron. Here 

we select the log-sigmoid as the active function due to 

its popularity, and it is described by the following: 

[Cx) = l/Cl + e-X) ……………………………….(2) 

 Because RAM is usually used to store the weights, 

we did not develop the online learning in our proposed 

architecture, so that the hardware resource is saved. 

II. COMPARISON BETWEEN SOFTWARE AND 

HARDWARE IMPLEMENTATION 

 ANN is an abstract description of human brain. As 

it is a mathematical model, it can be implemented by 

integrated circuits or simulated using computer program. 

Nonetheless, the inherent parallelism embedded in 

neural network dynamics can be only fully realized in 

hardware implementation. Neumann-type computers are 

well-known for ANN simulation. However, the speed of 

this kind of simulation is constrained when the size of 

ANN become large. In addition, software simulation is 

executed sequentially. Many researchers are developing 

VLSI implementations using various techniques, 

ranging from digital to analog and even optical. 

Complete parallel architecture can be realized with 

ASIC or VLSI, but as ANN design is targeted for certain 

problem solving, it is a waste to use ASIC or VLSI for 

implementation. While the primary disadvantages of 

analog implementation are the inaccurate computations 

and low design flexibility even though they can possibly 

provide higher speed with low resource cost, the major 

problems 

 ANN with digital architecture are the 

implementation of the large quantity of multipliers and 

nonlinear activation function of neurons. Both of them 

are usually large in size. 

III. NETWORK ARCHITECTURE 

   By using of the FPGA features hardware 

implementation of fully parallel ANN's is possible. In 

the fully parallel ANN's architecture number of 

multipliers per neuron equals to number of connections 

to this neuron and number of the full adders equals to 

number of connections to the previous layer mines one 

[9]. For example in 2-4-1 network output neuron have 4 

multipliers and 3 adders. In this work a VHDL library 

were designed for floating point addition fp_add and 

floating point multiplication fp_mul. But most resources 

of FPGAs are used by multiplication and addition 

algorithm. So in fully parallel ANN's must be used low 

number precision (for example 8 bit). With the low 

number precision fully parallel network is not suitable 

for any application. With the using fp_lib (32 bit 

floating point number precision)in ANN's is suitable for 

any application. But the architecture has one multipliers 

and one adders per layer and is not full parallel because 

of area resource of FPGAs. 

 In this structure there is one multiplier and one 

adder per layer. The inputs from  previous layer enter 

the layer parallel and multiplier serially with their 

corresponding weights. The results of multiplication are 

stored in their neuron area in the addition Neural 

Network Implementation in Hardware Using FPGAs 

1109 storage ROM. Multiplied value of per neuron are 

inputs for adder. The inputs of adder are added serially 

and each addition are inputs for sigmoid lookup table. 

The resultsof look up table are stored for next layer. 

This ANNs architecture is shown in Figure 

    

Fig.1 . Block view of the hardware architecture. Solid 

arrows show which components are always generated. 

Dashed arrows show components that may or may not 

be generated depending on the given parameters. 

A.  Recognizable Neural Networks 

 Among the recongurable systems currently 

designed in our laboratory, we present here a hardware 

implementation of multi-layer perceptrons. These net-

works are well-suited for classification problems like 

hand-written character recognition. Let us briey consider 

this problem. The network is trained with a set of 
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characters written by different people. After pre-

processing steps (nor-malisation, smoothing,...) we 

obtain a grey-level image (M x N pixels) of each 

character. The M x N grey-level values are stored in an 

input vector to which is assigned a class attribute. 

 Figure depicts the learning system. An input vector 

is presented to the neural network which determines an 

output. The comparison between the computed and 

desired output (class attribute) provides an output error. 

This signal is used by a learning algorithm to adapt the 

network parameters 

 We now brief describe the architecture of a multi-

layer perceptron. It is composed of several layers of 

interconnected processing elements (PEs) or neurons:  

an input layer which only holds input values, one or 

more hidden layers of PEs and Desired 

Output Network output 

Learning algorithm 

Comparison 

B. Proposed Engine 

Fig. 2. a) Perceptron neuron. b) MLP topology example. 

c) MLP execution pseudo-code. 

 As presented in fig. the output of a perceptron 

neuron is calculated by the function f(S), where f is the 

transfer function and S represents the summation of all 

input weight products. Analyzing fig.1a, we are able to 

state that there is inherent spatial parallelism in the 

execution of the neuron’s products, called intra-neural 

parallelism. In fig.1b we notice that a neuron inside a 

layer is independent from the others within the same 

layer, (intra-layer parallelism). However, there is 

dependency among the neurons from a layer and those 

from the previous layer. It happens because the outputs 

from a layer are the inputs of the next layer. 

Nevertheless, the computation of different layers can be 

done simultaneously, since each neuron has all inputs 

(temporal parallelism or pipeline). It means that if the 

layers process different data sets, they can execute 

simultaneously (inter-layer parallelism). 

 Fig.1c presents a MLP pseudo-code. The first 

(outer) loop executes the entire network for all data sets. 

The second loop executes all hidden and output layers. 

The third loop executes all neurons of the layer specified 

in the second loop. The fourth loop executes the 

products and sums of each neuron, where weights and 

inputs are determined by previous loops. After that, the 

transfer function is applied to the total sum of a neuron, 

generating the neuron’s output. Serial code implemented 

like this and executed in general purpose processors 

(GPPs) fails to explore the several different levels of 

inherent parallelisms inside an MLP, as previously 

indicated Some works implement ANN in parallel 

computers [1], e.g., clusters and multiprocessors [5], 

which yield great speedup over the sequential 

monoprocessed one. 

 However, since MLP network present fine-grained 

parallelism, their implementation in parallel computers 

not always is efficient, due to speedup, scalability and 

cost. 

 Our solution hypothesis is to design and implement 

MLP networks using hierarchical parallel and 

parameterized dedicated hardware architectures, to 

improve the computational performance. 

 

Functional blocks of the PE component. 

 The main features of our architecture are its spatial 

and temporal parallelisms in different hierarchical 

levels, and their parameterizations. The parameters are 

divided in two groups, named network and architecture 

parameters. The first group determines the main features 

of the network, such as: number of inputs, number of 

neurons, number of layers, type of transfer function and 

so on. The second group determines the main features of 

the architecture, such as: parallelism degree among 

layers, neurons and modules, implementation of the sub-

operations, word length (to represent input, weight and 

output values), and so on. 

 The proposed architecture is hierarchically 

composed of layer, neurons and modules (fig.2b). 

Observing fig.2, we notice that there are four possible 
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parallelism hierarchical levels in our architecture: (1) H1 

is the network, composed of layers (temporal 

parallelism); (2) H2 is the layer, composed of several 

neurons (spatial parallelism); (3) H3 is the neuron, with 

operation modules pipelined execution (temporal 

parallelism); (4) finally H4 is neuron module with 

parallel implementation (temporal and spatial 

parallelism) of each module (fig.2a). Fig2.c is a possible 

implementation of a neuron with parallelism in H4 in 

multiplication and addition modules. 

 Although there are parallelism levels in our 

architecture, they can be used or not. 

 Thus, the designer must analyze the tradeoffs 

between performance and cost. Total parallelism implies 

in high performance, but higher relative cost. For 

example, it is possible to design an engine without H1 

parallelism. In this case, only one layer would be 

executed at a time, which does not affect other 

parallelism levels or their execution. 

C. The Backpropagation Algorithm 

 The Backpropagation algorithm is widely used for 

training multi-layer percep-trons [9]. It iteratively 

computes the values of weights using a gradient descent 

algorithm.  

 The Backpropagation algorithm consists of the 

following stages: 

1.  Network initialization. 

 All weights are initialized to small random 

numbers. 

2.  Forward propagation. 

 An input vector is presented and propagated 

layerwise through the network. 

3.  Output error computation. 

4.  Backward propagation. 

 The output error signal is back-propagated through 

the network. This pro-cess allows to assign errors to 

hidden neurons. 

5. Weight update. 

 Previously computed errors (stages 3 and 4) and 

neuron activations deter-mine the weight changes. 

Steps 2 to 5 are carried out for all vectors in the 

database.  

 This training process is repeated until the output 

error signal falls below a predetermined threshold. 

 When we train a system by example, it is usually 

impossible to provide every possible input signal. 

Therefore, an important issue of training is the 

capability of the network to generalize to previously 

unseen patterns. However, the generalization capability 

depends on the network topology. A rule of thumb for 

obtaining a good generalization is to use the smallest 

system that can learn the training vectors. 

 Unfortunately, the Back propagation algorithm does 

not give any information about the topology of the 

network (number of hidden layers, interconnections, 

number of neurons). Pruning (or growing) algorithms 

allow to _nd an optimal topology during training by 

removing (or adding) neurons and connections.Stands 

for Symmetric MultiProcessing. 

             

 

III. SOFTWARE AND HARDWARE REQUIREMENT 

 For Software simulation I will prefer MODELSIM 

and for synthesis I will be prefer XILINX. Hardware 

requirement is SPARTAN-3. 

IV. RESULT V ERIFICATION AND ANALYSIS 

 Observe the required result like arithmetic, logical, 

branching and shifting. 

 

Figure 8.Simulation  Result of Arithmetic Processor  for 

addition 
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Figure 8.Simulation  Result of Processing Element 
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VI.  DISCUSSION AND CONCLUSION 

 The goal of our work is to implement a General 

purpose neural based instrument for automatic 

Waveform detection. 

 In general, it is shown that implementation of 

neural networks using FPGAs. The resultant neural 

networks are modular, compact, and efficient and the 

number of neurons, number of hidden layers and 

number of inputs are easily changed.  
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