

ISSN (PRINT) : 2320 – 8945, Volume -1, Issue -3, 2013

99

Implementation of FPGA-Based General Purpose

Artificial Neural Network

Chandrashekhar Kalbande & Anil Bavaskar

Dept of Electronics Engineering, Priyadarshini College of Nagpur, Maharashtra India

E-mail : ckshekhar333@gmail.com & anilbavaskar@gmail.com

Abstract - The usage of the FPGA (Field Programmable

Gate Array) for neural network implementation provides

flexibility in programmable systems. For the neural

network based instrument prototype in real time

application, conventional specific VLSI neural chip design

suffers the limitation in time and cost. With low precision

artificial neural network design, FPGAs have higher speed

and smaller size for real time application than the VLSI

design. In addition, artificial neural network based on

FPGAs has fairly achieved with classification application.

The programmability of reconfigurable FPGAs yields the

availability of fast special purpose hardware for wide

applications. Its programmability could set the conditions

to explore new neural network algorithms and problems of

a scale that would not be feasible with conventional

processor. The goal of this work is to realize the hardware

implementation of neural network using FPGAs. Digital

system architecture is presented using Very High Speed

Integrated Circuits Hardware Description Language

(VHDL) and is implemented in FPGA chip.

Keywords— Backpropagation, field programmable gate

array (FPGA), multilayer perceptron, neural network,

VHDL, Xilinx FPGA

I. INTRODUCTION

 It is a computational system inspired by the

Structure, Processing Method, Learning Ability of a

biological brain. Artificial Neural Networks (ANNs) can

solve great variety of problems in areas of pattern

recognition, image processing and medical diagnostic.

The biologically inspired ANNs are parallel and

distributed information processing systems. This system

requires the massive parallel computation.

 ANN is an information processing system that aims

to simulate human brain's architecture and function. It is

now a popular subject in many fields and is also a tool

in many areas of problem solving. ANNs have been

successfully applied to solve problems where

conventional methods have been unsuccessful, such as

speech recognition and synthesis, image processing and

coding, pattern recognition and classification, power

load forecasting, interpretation and prediction of

financial trends for stock-market, manufacturing of

composite structures, processing modeling, monitoring

and control etc.

Characteristics of Artificial Neural Networks

 A large number of very simple processing neuron-

like processing elements. A large number of weighted

connections between the elements Distributed

representation of knowledge over the connections

Knowledge is acquired by network through a learning

process.

Reasons for Usage of Artificial Neural Networks

 The main reasons for using an Artificial Neural

Networks are as follows. It provides Massive

Parallelism. A Distributed representation of any system

can be developed with enhance Learning ability and

Generalization ability of the system. It will also provide

Fault tolerance.

Elements of Artificial Neural Networks

- Processing Units

- Topology

- Learning Algorithm

FPGAs are chosen for implementation ANNs with the

following reason:

 They can be applied a wide range of logic gates

starting with tens of thousands up to few millions

gates.

 They can be reconfigured to change logic function

while resident in the system.

 ITSI Transactions on Electrical and Electronics Engineering (ITSI-TEEE)

ISSN (PRINT) : 2320 – 8945, Volume -1, Issue -3, 2013

100

 FPGAs have short design cycle that leads to fairly

inexpensive logic design.

 FPGAs have parallelism in their nature. Thus, they

have parallel computing environment and allows

logic cycle design to work parallel.

 They have powerful design, programming and

syntheses tools.

A. Mathematical Model

 A multilayer neural network is composed of one

input layer, several hidden layers for computation and

one output layer. Each layer consists of a set of

processing elements called neurons and the main task of

each neuron is processing the following function:

y = [Cx) = [CLf=1 WiXi + b)…………………… (1)

where Xi stands for the ith input, and Wi is the weight in

the i
th

 connection and b is the bias. The function f(x) is

the nonlinear active function used in the neuron. Here

we select the log-sigmoid as the active function due to

its popularity, and it is described by the following:

[Cx) = l/Cl + e-X) ……………………………….(2)

 Because RAM is usually used to store the weights,

we did not develop the online learning in our proposed

architecture, so that the hardware resource is saved.

II. COMPARISON BETWEEN SOFTWARE AND

HARDWARE IMPLEMENTATION

 ANN is an abstract description of human brain. As

it is a mathematical model, it can be implemented by

integrated circuits or simulated using computer program.

Nonetheless, the inherent parallelism embedded in

neural network dynamics can be only fully realized in

hardware implementation. Neumann-type computers are

well-known for ANN simulation. However, the speed of

this kind of simulation is constrained when the size of

ANN become large. In addition, software simulation is

executed sequentially. Many researchers are developing

VLSI implementations using various techniques,

ranging from digital to analog and even optical.

Complete parallel architecture can be realized with

ASIC or VLSI, but as ANN design is targeted for certain

problem solving, it is a waste to use ASIC or VLSI for

implementation. While the primary disadvantages of

analog implementation are the inaccurate computations

and low design flexibility even though they can possibly

provide higher speed with low resource cost, the major

problems

 ANN with digital architecture are the

implementation of the large quantity of multipliers and

nonlinear activation function of neurons. Both of them

are usually large in size.

III. NETWORK ARCHITECTURE

 By using of the FPGA features hardware

implementation of fully parallel ANN's is possible. In

the fully parallel ANN's architecture number of

multipliers per neuron equals to number of connections

to this neuron and number of the full adders equals to

number of connections to the previous layer mines one

[9]. For example in 2-4-1 network output neuron have 4

multipliers and 3 adders. In this work a VHDL library

were designed for floating point addition fp_add and

floating point multiplication fp_mul. But most resources

of FPGAs are used by multiplication and addition

algorithm. So in fully parallel ANN's must be used low

number precision (for example 8 bit). With the low

number precision fully parallel network is not suitable

for any application. With the using fp_lib (32 bit

floating point number precision)in ANN's is suitable for

any application. But the architecture has one multipliers

and one adders per layer and is not full parallel because

of area resource of FPGAs.

 In this structure there is one multiplier and one

adder per layer. The inputs from previous layer enter

the layer parallel and multiplier serially with their

corresponding weights. The results of multiplication are

stored in their neuron area in the addition Neural

Network Implementation in Hardware Using FPGAs

1109 storage ROM. Multiplied value of per neuron are

inputs for adder. The inputs of adder are added serially

and each addition are inputs for sigmoid lookup table.

The resultsof look up table are stored for next layer.

This ANNs architecture is shown in Figure

Fig.1 . Block view of the hardware architecture. Solid

arrows show which components are always generated.

Dashed arrows show components that may or may not

be generated depending on the given parameters.

A. Recognizable Neural Networks

 Among the recongurable systems currently

designed in our laboratory, we present here a hardware

implementation of multi-layer perceptrons. These net-

works are well-suited for classification problems like

hand-written character recognition. Let us briey consider

this problem. The network is trained with a set of

 ITSI Transactions on Electrical and Electronics Engineering (ITSI-TEEE)

ISSN (PRINT) : 2320 – 8945, Volume -1, Issue -3, 2013

101

characters written by different people. After pre-

processing steps (nor-malisation, smoothing,...) we

obtain a grey-level image (M x N pixels) of each

character. The M x N grey-level values are stored in an

input vector to which is assigned a class attribute.

 Figure depicts the learning system. An input vector

is presented to the neural network which determines an

output. The comparison between the computed and

desired output (class attribute) provides an output error.

This signal is used by a learning algorithm to adapt the

network parameters

 We now brief describe the architecture of a multi-

layer perceptron. It is composed of several layers of

interconnected processing elements (PEs) or neurons:

an input layer which only holds input values, one or

more hidden layers of PEs and Desired

Output Network output

Learning algorithm

Comparison

B. Proposed Engine

Fig. 2. a) Perceptron neuron. b) MLP topology example.

c) MLP execution pseudo-code.

 As presented in fig. the output of a perceptron

neuron is calculated by the function f(S), where f is the

transfer function and S represents the summation of all

input weight products. Analyzing fig.1a, we are able to

state that there is inherent spatial parallelism in the

execution of the neuron’s products, called intra-neural

parallelism. In fig.1b we notice that a neuron inside a

layer is independent from the others within the same

layer, (intra-layer parallelism). However, there is

dependency among the neurons from a layer and those

from the previous layer. It happens because the outputs

from a layer are the inputs of the next layer.

Nevertheless, the computation of different layers can be

done simultaneously, since each neuron has all inputs

(temporal parallelism or pipeline). It means that if the

layers process different data sets, they can execute

simultaneously (inter-layer parallelism).

 Fig.1c presents a MLP pseudo-code. The first

(outer) loop executes the entire network for all data sets.

The second loop executes all hidden and output layers.

The third loop executes all neurons of the layer specified

in the second loop. The fourth loop executes the

products and sums of each neuron, where weights and

inputs are determined by previous loops. After that, the

transfer function is applied to the total sum of a neuron,

generating the neuron’s output. Serial code implemented

like this and executed in general purpose processors

(GPPs) fails to explore the several different levels of

inherent parallelisms inside an MLP, as previously

indicated Some works implement ANN in parallel

computers [1], e.g., clusters and multiprocessors [5],

which yield great speedup over the sequential

monoprocessed one.

 However, since MLP network present fine-grained

parallelism, their implementation in parallel computers

not always is efficient, due to speedup, scalability and

cost.

 Our solution hypothesis is to design and implement

MLP networks using hierarchical parallel and

parameterized dedicated hardware architectures, to

improve the computational performance.

Functional blocks of the PE component.

 The main features of our architecture are its spatial

and temporal parallelisms in different hierarchical

levels, and their parameterizations. The parameters are

divided in two groups, named network and architecture

parameters. The first group determines the main features

of the network, such as: number of inputs, number of

neurons, number of layers, type of transfer function and

so on. The second group determines the main features of

the architecture, such as: parallelism degree among

layers, neurons and modules, implementation of the sub-

operations, word length (to represent input, weight and

output values), and so on.

 The proposed architecture is hierarchically

composed of layer, neurons and modules (fig.2b).

Observing fig.2, we notice that there are four possible

 ITSI Transactions on Electrical and Electronics Engineering (ITSI-TEEE)

ISSN (PRINT) : 2320 – 8945, Volume -1, Issue -3, 2013

102

parallelism hierarchical levels in our architecture: (1) H1

is the network, composed of layers (temporal

parallelism); (2) H2 is the layer, composed of several

neurons (spatial parallelism); (3) H3 is the neuron, with

operation modules pipelined execution (temporal

parallelism); (4) finally H4 is neuron module with

parallel implementation (temporal and spatial

parallelism) of each module (fig.2a). Fig2.c is a possible

implementation of a neuron with parallelism in H4 in

multiplication and addition modules.

 Although there are parallelism levels in our

architecture, they can be used or not.

 Thus, the designer must analyze the tradeoffs

between performance and cost. Total parallelism implies

in high performance, but higher relative cost. For

example, it is possible to design an engine without H1

parallelism. In this case, only one layer would be

executed at a time, which does not affect other

parallelism levels or their execution.

C. The Backpropagation Algorithm

 The Backpropagation algorithm is widely used for

training multi-layer percep-trons [9]. It iteratively

computes the values of weights using a gradient descent

algorithm.

 The Backpropagation algorithm consists of the

following stages:

1. Network initialization.

 All weights are initialized to small random

numbers.

2. Forward propagation.

 An input vector is presented and propagated

layerwise through the network.

3. Output error computation.

4. Backward propagation.

 The output error signal is back-propagated through

the network. This pro-cess allows to assign errors to

hidden neurons.

5. Weight update.

 Previously computed errors (stages 3 and 4) and

neuron activations deter-mine the weight changes.

Steps 2 to 5 are carried out for all vectors in the

database.

 This training process is repeated until the output

error signal falls below a predetermined threshold.

 When we train a system by example, it is usually

impossible to provide every possible input signal.

Therefore, an important issue of training is the

capability of the network to generalize to previously

unseen patterns. However, the generalization capability

depends on the network topology. A rule of thumb for

obtaining a good generalization is to use the smallest

system that can learn the training vectors.

 Unfortunately, the Back propagation algorithm does

not give any information about the topology of the

network (number of hidden layers, interconnections,

number of neurons). Pruning (or growing) algorithms

allow to _nd an optimal topology during training by

removing (or adding) neurons and connections.Stands

for Symmetric MultiProcessing.

III. SOFTWARE AND HARDWARE REQUIREMENT

 For Software simulation I will prefer MODELSIM

and for synthesis I will be prefer XILINX. Hardware

requirement is SPARTAN-3.

IV. RESULT V ERIFICATION AND ANALYSIS

 Observe the required result like arithmetic, logical,

branching and shifting.

Figure 8.Simulation Result of Arithmetic Processor for

addition

 ITSI Transactions on Electrical and Electronics Engineering (ITSI-TEEE)

ISSN (PRINT) : 2320 – 8945, Volume -1, Issue -3, 2013

103

Figure 8.Simulation Result of Processing Element

V. ACKNOWLEDGEMENTS

 Authors wish to remark the great task carried out by

the Xilinx and Modelsim user guide; and the authors

wish to thank Anil Bavaskar for his contribution in the

design process.

VI. DISCUSSION AND CONCLUSION

 The goal of our work is to implement a General

purpose neural based instrument for automatic

Waveform detection.

 In general, it is shown that implementation of

neural networks using FPGAs. The resultant neural

networks are modular, compact, and efficient and the

number of neurons, number of hidden layers and

number of inputs are easily changed.

VII. REFERENCES

[1] I. A. Basheer and M. Hajmeer, “Artificial neural

networks: Fundamentals, computing, design, and

application,” J. Microbio. Methods, vol.43, pp. 3–

31, Dec. 2000.

[2] Xu Wang, Hong Wang and Wenhui. Wang,

Artificial Neural Network Theory and

Application, Shenyang: Northeastern University

Press,2000. I]M. Ananda Ro and J. Srinivas,

Neural Networks Algorithms

[3] A. R. Omondi, ”Neurocomputers: a dead end?,”

International Journal of Neural Systems, vol. 10,

no. 6, pp.

[4] J. C. Rajapakse and W. Lu, ”Unified approach to

independent component neural networks”, Neural

Computation,2000.475-481,2000.

[5] Applications, Alpha Science International Ltd.,

Part Ill, pp.157, 2003

[6] Maeda, Y.; Tada, T.: “FPGA Implementation of a

Pulse Density Neural Network with Learning

Ability Using Simultaneous Perturbation”, IEEE

Transactions on Neural Networks, vol. 14, no.

3,2003, pp. 688-695.

[7] M. Paliwal and U. A. Kumar, “Neural networks

and statistical techniques:A review of

applications,” Expert Systems With

Applications,vol. 36, pp. 2–17, 2009

[8] Alexander Gomperts, Abhisek Ukil,, and Franz

Zurfluh “Development and Implementation of

FPGA-Based General Purpose Neural Networks

for Online Applications” VOL. 7, NO. 1,

FEBRUARY 2011.

[9] M. Ananda Ro and J. Srinivas, Neural Networks

Algorithms and Applications, Alpha Science

International Ltd., Part Ill, pp.157, 2003

[10] U. Ruckert, A. Funke and C. Pintaske,

"Acceleratorboard for Neural Associative

Memories," Neurocomputing, Vo1.5, No.1, pp

39-49, 1993

[11] M. Stevenson, R. Weinter, and B. Widow,

"Sensitivity of Feedforward Neural Networks to

Weight Errors," IEEE Transactions on Neural

Networks, Vol. 1, No. 2, pp 71-80,1990.



